brlib repo creation

This commit is contained in:
2023-12-24 18:17:38 +01:00
parent e794bdf9c4
commit f9318ce49b
34 changed files with 0 additions and 0 deletions

499
include/bits.h Normal file
View File

@@ -0,0 +1,499 @@
/* bits.h - bits functions.
*
* Copyright (C) 2021-2022 Bruno Raoult ("br")
* Licensed under the GNU General Public License v3.0 or later.
* Some rights reserved. See COPYING.
*
* You should have received a copy of the GNU General Public License along with this
* program. If not, see <https://www.gnu.org/licenses/gpl-3.0-standalone.html>.
*
* SPDX-License-Identifier: GPL-3.0-or-later <https://spdx.org/licenses/GPL-3.0-or-later.html>
*
*/
#ifndef _BITS_H
#define _BITS_H
#include <stdint.h>
#include <stdbool.h>
#include <bits/wordsize.h> /* defines __WORDSIZE: 32 or 64 */
void bits_implementation(void);
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
/* no plan to support 32bits for now...
* #if __WORDSIZE != 64
* #error "Only 64 bits word size supported."
* #endif
*/
/* fixed-size types
*/
typedef int64_t s64;
typedef int32_t s32;
typedef int16_t s16;
typedef int8_t s8;
typedef uint64_t u64;
typedef uint32_t u32;
typedef uint16_t u16;
typedef uint8_t u8;
/* convenience types
*/
typedef long long int llong;
typedef unsigned long long int ullong;
typedef unsigned long int ulong;
typedef unsigned int uint;
typedef unsigned short ushort;
typedef unsigned char uchar;
/* char is a special case, as it can be signed or unsigned
*/
typedef signed char schar;
/* define common types sizes
*/
#define BITS_PER_CHAR 8
#ifndef BITS_PER_SHORT
#define BITS_PER_SHORT (BITS_PER_CHAR * sizeof (short))
#endif
#ifndef BITS_PER_INT
#define BITS_PER_INT (BITS_PER_CHAR * sizeof (int))
#endif
#ifndef BITS_PER_LONG
#define BITS_PER_LONG (BITS_PER_CHAR * sizeof (long))
#endif
#ifndef BITS_PER_LLONG
#define BITS_PER_LLONG (BITS_PER_CHAR * sizeof (long long))
#endif
/* count set bits: 10101000 -> 3
* ^ ^ ^
*/
static __always_inline int popcount64(u64 n)
{
# if __has_builtin(__builtin_popcountl)
return __builtin_popcountl(n);
# else
int count = 0;
while (n) {
count++;
n &= (n - 1);
}
return count;
# endif
}
static __always_inline int popcount32(u32 n)
{
# if __has_builtin(__builtin_popcount)
return __builtin_popcount(n);
# else
int count = 0;
while (n) {
count++;
n &= (n - 1);
}
return count;
# endif
}
/* count trailing zeroes : 00101000 -> 3
* ^^^
*/
static __always_inline int ctz64(u64 n)
{
# if __has_builtin(__builtin_ctzl)
return __builtin_ctzl(n);
# elif __has_builtin(__builtin_clzl)
return __WORDSIZE - (__builtin_clzl(n & -n) + 1);
# else
return popcount64((n & -n) - 1);
# endif
}
static __always_inline int ctz32(u32 n)
{
# if __has_builtin(__builtin_ctz)
return __builtin_ctzl(n);
# elif __has_builtin(__builtin_clz)
return __WORDSIZE - (__builtin_clz(n & -n) + 1);
# else
return popcount32((n & -n) - 1);
# endif
}
/* clz - count leading zeroes : 00101000 -> 2
* ^^
*/
static __always_inline int clz64(u64 n)
{
# if __has_builtin(__builtin_clzl)
return __builtin_clzl(n);
# else
u64 r, q;
r = (n > 0xFFFFFFFF) << 5; n >>= r;
q = (n > 0xFFFF) << 4; n >>= q; r |= q;
q = (n > 0xFF ) << 3; n >>= q; r |= q;
q = (n > 0xF ) << 2; n >>= q; r |= q;
q = (n > 0x3 ) << 1; n >>= q; r |= q;
r |= (n >> 1);
return 64 - r - 1;
# endif
}
static __always_inline int clz32(u32 n)
{
# if __has_builtin(__builtin_clz)
return __builtin_clz(n);
# else
u32 r, q;
r = (n > 0xFFFF) << 4; n >>= r;
q = (n > 0xFF ) << 3; n >>= q; r |= q;
q = (n > 0xF ) << 2; n >>= q; r |= q;
q = (n > 0x3 ) << 1; n >>= q; r |= q;
r |= (n >> 1);
return 32 - r - 1;
# endif
}
/* fls - find last set : 00101000 -> 6
* ^
*/
static __always_inline int fls64(u64 n)
{
if (!n)
return 0;
return 64 - clz64(n);
}
static __always_inline int fls32(u32 n)
{
if (!n)
return 0;
return 32 - clz32(n);
}
/* find first set : 00101000 -> 4
* ^
*/
static __always_inline uint ffs64(u64 n)
{
# if __has_builtin(__builtin_ffsl)
return __builtin_ffsl(n);
# elif __has_builtin(__builtin_ctzl)
if (n == 0)
return (0);
return __builtin_ctzl(n) + 1;
# else
return popcount64(n ^ ~-n);
# endif
}
static __always_inline uint ffs32(u32 n)
{
# if __has_builtin(__builtin_ffs)
return __builtin_ffs(n);
# elif __has_builtin(__builtin_ctz)
if (n == 0)
return (0);
return __builtin_ctz(n) + 1;
# else
return popcount32(n ^ ~-n);
# endif
}
/* rolXX/rorXX are taken from kernel's <linux/bitops.h> are are:
* SPDX-License-Identifier: GPL-2.0
*/
/**
* rol64 - rotate a 64-bit value left
* @word: value to rotate
* @shift: bits to roll
*/
static inline u64 rol64(u64 word, unsigned int shift)
{
return (word << (shift & 63)) | (word >> ((-shift) & 63));
}
/**
* ror64 - rotate a 64-bit value right
* @word: value to rotate
* @shift: bits to roll
*/
static inline u64 ror64(u64 word, unsigned int shift)
{
return (word >> (shift & 63)) | (word << ((-shift) & 63));
}
/**
* rol32 - rotate a 32-bit value left
* @word: value to rotate
* @shift: bits to roll
*/
static inline u32 rol32(u32 word, unsigned int shift)
{
return (word << (shift & 31)) | (word >> ((-shift) & 31));
}
/**
* ror32 - rotate a 32-bit value right
* @word: value to rotate
* @shift: bits to roll
*/
static inline u32 ror32(u32 word, unsigned int shift)
{
return (word >> (shift & 31)) | (word << ((-shift) & 31));
}
/**
* rol16 - rotate a 16-bit value left
* @word: value to rotate
* @shift: bits to roll
*/
static inline u16 rol16(u16 word, unsigned int shift)
{
return (word << (shift & 15)) | (word >> ((-shift) & 15));
}
/**
* ror16 - rotate a 16-bit value right
* @word: value to rotate
* @shift: bits to roll
*/
static inline u16 ror16(u16 word, unsigned int shift)
{
return (word >> (shift & 15)) | (word << ((-shift) & 15));
}
/**
* rol8 - rotate an 8-bit value left
* @word: value to rotate
* @shift: bits to roll
*/
static inline u8 rol8(u8 word, unsigned int shift)
{
return (word << (shift & 7)) | (word >> ((-shift) & 7));
}
/**
* ror8 - rotate an 8-bit value right
* @word: value to rotate
* @shift: bits to roll
*/
static inline u8 ror8(u8 word, unsigned int shift)
{
return (word >> (shift & 7)) | (word << ((-shift) & 7));
}
/**
* __ilog2 - non-constant log of base 2 calculators
* - the arch may override these in asm/bitops.h if they can be implemented
* more efficiently than using fls() and fls64()
* - the arch is not required to handle n==0 if implementing the fallback
*/
static __always_inline __attribute__((const))
int __ilog2_u64(u64 n)
{
return fls64(n) - 1;
}
static __always_inline __attribute__((const))
int __ilog2_u32(u32 n)
{
return fls32(n) - 1;
}
/**
* is_power_of_2() - check if a value is a power of two
* @n: the value to check
*
* Determine whether some value is a power of two, where zero is
* *not* considered a power of two.
* Return: true if @n is a power of 2, otherwise false.
*/
static inline __attribute__((const))
bool is_power_of_2(unsigned long n)
{
return (n != 0 && ((n & (n - 1)) == 0));
}
/**
* __roundup_pow_of_two() - round up to nearest power of two
* @n: value to round up
*/
static inline __attribute__((const))
u64 __roundup_pow_of_two(u64 n)
{
return 1UL << fls64(n - 1);
}
/**
* __rounddown_pow_of_two() - round down to nearest power of two
* @n: value to round down
*/
static inline __attribute__((const)) u64 __rounddown_pow_of_two(u64 n)
{
return 1UL << (fls64(n) - 1);
}
/**
* ilog2 - log base 2 of 32-bit or a 64-bit unsigned value
* @n: parameter
*
* constant-capable log of base 2 calculation
* - this can be used to initialise global variables from constant data, hence
* the massive ternary operator construction
*
* selects the appropriately-sized optimised version depending on sizeof(n)
*/
#define ilog2(n) \
( \
__builtin_constant_p(n) ? \
((n) < 2 ? 0 : \
63 - __builtin_clzll(n)) : \
(sizeof(n) <= 4) ? \
__ilog2_u32(n) : \
__ilog2_u64(n) \
)
/**
* roundup_pow_of_two - round the given value up to nearest power of two
* @n: parameter
*
* round the given value up to the nearest power of two
* - the result is undefined when n == 0
* - this can be used to initialise global variables from constant data
*/
#define roundup_pow_of_two(n) \
( \
__builtin_constant_p(n) ? ( \
((n) == 1) ? 1 : \
(1UL << (ilog2((n) - 1) + 1)) \
) : \
__roundup_pow_of_two(n) \
)
/**
* rounddown_pow_of_two - round the given value down to nearest power of two
* @n: parameter
*
* round the given value down to the nearest power of two
* - the result is undefined when n == 0
* - this can be used to initialise global variables from constant data
*/
#define rounddown_pow_of_two(n) \
( \
__builtin_constant_p(n) ? ( \
(1UL << ilog2(n))) : \
__rounddown_pow_of_two(n) \
)
static inline __attribute_const__ int __order_base_2(unsigned long n)
{
return n > 1 ? ilog2(n - 1) + 1 : 0;
}
/**
* order_base_2 - calculate the (rounded up) base 2 order of the argument
* @n: parameter
*
* The first few values calculated by this routine:
* ob2(0) = 0
* ob2(1) = 0
* ob2(2) = 1
* ob2(3) = 2
* ob2(4) = 2
* ob2(5) = 3
* ... and so on.
*/
#define order_base_2(n) \
( \
__builtin_constant_p(n) ? ( \
((n) == 0 || (n) == 1) ? \
0 : \
ilog2((n) - 1) + 1) : \
__order_base_2(n) \
)
static inline __attribute__((const)) int __bits_per(unsigned long n)
{
if (n < 2)
return 1;
if (is_power_of_2(n))
return order_base_2(n) + 1;
return order_base_2(n);
}
/**
* bits_per - calculate the number of bits required for the argument
* @n: parameter
*
* This is constant-capable and can be used for compile time
* initializations, e.g bitfields.
*
* The first few values calculated by this routine:
* bf(0) = 1
* bf(1) = 1
* bf(2) = 2
* bf(3) = 2
* bf(4) = 3
* ... and so on.
*/
#define bits_per(n) \
( \
__builtin_constant_p(n) ? ( \
((n) == 0 || (n) == 1) ? \
1 : \
ilog2(n) + 1 : \
__bits_per(n) \
)
/** bit_for_each - iterate over an u64/u32 bits
* @pos: an int used as current bit
* @tmp: a temp u64/u32 used as temporary storage
* @ul: the u64/u32 to loop over
*
* Usage:
* u64 u=139, _t; // u=b10001011
* int cur;
* bit_for_each64(cur, _t, u) {
* printf("%d\n", cur);
* }
* This will display the position of each bit set in ul: 1, 2, 4, 8
*
* I should probably re-think the implementation...
*/
#define bit_for_each64(pos, tmp, ul) \
for (tmp = ul, pos = ffs64(tmp); tmp; tmp &= (tmp - 1), pos = ffs64(tmp))
#define bit_for_each32(pos, tmp, ul) \
for (tmp = ul, pos = ffs32(tmp); tmp; tmp &= (tmp - 1), pos = ffs32(tmp))
/** or would it be more useful (counting bits from zero instead of 1) ?
*/
#define bit_for_each64_2(pos, tmp, ul) \
for (tmp = ul, pos = ctz64(tmp); tmp; tmp ^= 1UL << pos, pos = ctz64(tmp))
#define bit_for_each32_2(pos, tmp, ul) \
for (tmp = ul, pos = ctz32(tmp); tmp; tmp ^= 1U << pos, pos = ctz32(tmp))
#endif /* _BITS_H */

224
include/br.h Normal file
View File

@@ -0,0 +1,224 @@
/* br.h - misc macros.
*
* Copyright (C) 2021-2022 Bruno Raoult ("br")
* Licensed under the GNU General Public License v3.0 or later.
* Some rights reserved. See COPYING.
*
* You should have received a copy of the GNU General Public License along with this
* program. If not, see <https://www.gnu.org/licenses/gpl-3.0-standalone.html>.
*
* SPDX-License-Identifier: GPL-3.0-or-later <https://spdx.org/licenses/GPL-3.0-or-later.html>
*
* Some parts are taken from Linux's kernel <linux/kernel.h> and others, and are :
* SPDX-License-Identifier: GPL-2.0
*
* This header contains generic stuff.
*/
#ifndef _BR_H
#define _BR_H
#include "struct-group.h"
/* Indirect stringification. Doing two levels allows the parameter to be a
* macro itself. For example, compile with -DFOO=bar, __stringify(FOO)
* converts to "bar".
*/
#define __stringify_1(x...) #x
#define __stringify(x...) __stringify_1(x)
/* generate a (maybe) unique id.
*/
#define ___PASTE(x, y) x##y
#define __PASTE(x, y) ___PASTE(x, y)
#define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__)
/* unused/used parameters/functions
* https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-unused-function-attribute
* https://gcc.gnu.org/onlinedocs/gcc/Common-Type-Attributes.html#index-unused-type-attribute
* https://gcc.gnu.org/onlinedocs/gcc/Common-Variable-Attributes.html#index-unused-variable-attribute
* https://gcc.gnu.org/onlinedocs/gcc/Label-Attributes.html#index-unused-label-attribute
* https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-used-function-attribute
* https://gcc.gnu.org/onlinedocs/gcc/Common-Variable-Attributes.html#index-used-variable-attribute
*/
#define __unused __attribute__((__unused__))
#define __used __attribute__((__used__))
/* see https://lkml.org/lkml/2018/3/20/845 for explanation of this monster
*/
#define __is_constexpr(x) \
(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
/*
* min()/max()/clamp() macros must accomplish three things:
*
* - avoid multiple evaluations of the arguments (so side-effects like
* "x++" happen only once) when non-constant.
* - perform strict type-checking (to generate warnings instead of
* nasty runtime surprises). See the "unnecessary" pointer comparison
* in __typecheck().
* - retain result as a constant expressions when called with only
* constant expressions (to avoid tripping VLA warnings in stack
* allocation usage).
*/
#define __typecheck(x, y) \
(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
#define __no_side_effects(x, y) \
(__is_constexpr(x) && __is_constexpr(y))
#define __safe_cmp(x, y) \
(__typecheck(x, y) && __no_side_effects(x, y))
#define __cmp(x, y, op) ((x) op (y) ? (x) : (y))
#define __cmp_once(x, y, unique_x, unique_y, op) ({ \
typeof(x) unique_x = (x); \
typeof(y) unique_y = (y); \
__cmp(unique_x, unique_y, op); })
#define __careful_cmp(x, y, op) \
__builtin_choose_expr(__safe_cmp(x, y), \
__cmp(x, y, op), \
__cmp_once(x, y, __UNIQUE_ID(__x), __UNIQUE_ID(__y), op))
#define __pure __attribute__((__pure__))
/**
* min - return minimum of two values of the same or compatible types
* @x: first value
* @y: second value
*/
#define min(x, y) __careful_cmp(x, y, <)
/**
* max - return maximum of two values of the same or compatible types
* @x: first value
* @y: second value
*/
#define max(x, y) __careful_cmp(x, y, >)
/**
* min3 - return minimum of three values
* @x: first value
* @y: second value
* @z: third value
*/
#define min3(x, y, z) min((typeof(x))min(x, y), z)
/**
* max3 - return maximum of three values
* @x: first value
* @y: second value
* @z: third value
*/
#define max3(x, y, z) max((typeof(x))max(x, y), z)
/**
* min_not_zero - return the minimum that is _not_ zero, unless both are zero
* @x: value1
* @y: value2
*/
#define min_not_zero(x, y) ({ \
typeof(x) __x = (x); \
typeof(y) __y = (y); \
__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
/**
* clamp - return a value clamped to a given range with strict typechecking
* @val: current value
* @lo: lowest allowable value
* @hi: highest allowable value
*
* This macro does strict typechecking of @lo/@hi to make sure they are of the
* same type as @val. See the unnecessary pointer comparisons.
*/
#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
/*
* ..and if you can't take the strict
* types, you can specify one yourself.
*
* Or not use min/max/clamp at all, of course.
*/
/**
* min_t - return minimum of two values, using the specified type
* @type: data type to use
* @x: first value
* @y: second value
*/
#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <)
/**
* max_t - return maximum of two values, using the specified type
* @type: data type to use
* @x: first value
* @y: second value
*/
#define max_t(type, x, y) __careful_cmp((type)(x), (type)(y), >)
/**
* clamp_t - return a value clamped to a given range using a given type
* @type: the type of variable to use
* @val: current value
* @lo: minimum allowable value
* @hi: maximum allowable value
*
* This macro does no typechecking and uses temporary variables of type
* @type to make all the comparisons.
*/
#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
/**
* clamp_val - return a value clamped to a given range using val's type
* @val: current value
* @lo: minimum allowable value
* @hi: maximum allowable value
*
* This macro does no typechecking and uses temporary variables of whatever
* type the input argument @val is. This is useful when @val is an unsigned
* type and @lo and @hi are literals that will otherwise be assigned a signed
* integer type.
*/
#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
/**
* swap - swap values of @a and @b
* @a: first value
* @b: second value
*/
#define swap(a, b) \
do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
/**
* ARRAY_SIZE - get the number of elements in array @arr
* @arr: array to be sized
*/
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
/**
* abs - return absolute value of an argument
* @x: the value. If it is unsigned type, it is converted to signed type first.
* char is treated as if it was signed (regardless of whether it really is)
* but the macro's return type is preserved as char.
*
* Return: an absolute value of x.
*/
#define abs(x) __abs_choose_expr(x, long long, \
__abs_choose_expr(x, long, \
__abs_choose_expr(x, int, \
__abs_choose_expr(x, short, \
__abs_choose_expr(x, char, \
__builtin_choose_expr( \
__builtin_types_compatible_p(typeof(x), char), \
(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
((void)0)))))))
#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
__builtin_types_compatible_p(typeof(x), signed type) || \
__builtin_types_compatible_p(typeof(x), unsigned type), \
({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
#endif /* _BR_H */

71
include/bug.h Normal file
View File

@@ -0,0 +1,71 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BR_BUG_H
#define _BR_BUG_H
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include "likely.h"
#include "debug.h"
/* BUG functions inspired by Linux kernel's <asm/bug.h>
*/
#define panic() exit(0xff)
/*
* Don't use BUG() or BUG_ON() unless there's really no way out; one
* example might be detecting data structure corruption in the middle
* of an operation that can't be backed out of. If the (sub)system
* can somehow continue operating, perhaps with reduced functionality,
* it's probably not BUG-worthy.
*
* If you're tempted to BUG(), think again: is completely giving up
* really the *only* solution? There are usually better options, where
* users don't need to reboot ASAP and can mostly shut down cleanly.
*/
#define BUG() do { \
fprintf(stderr, "BUG: failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); \
panic(); \
} while (0)
#define BUG_ON(condition) do { if (unlikely(condition)) BUG(); } while (0)
/*
* WARN(), WARN_ON(), WARN_ON_ONCE, and so on can be used to report
* significant kernel issues that need prompt attention if they should ever
* appear at runtime.
*
* Do not use these macros when checking for invalid external inputs
* (e.g. invalid system call arguments, or invalid data coming from
* network/devices), and on transient conditions like ENOMEM or EAGAIN.
* These macros should be used for recoverable kernel issues only.
* For invalid external inputs, transient conditions, etc use
* pr_err[_once/_ratelimited]() followed by dump_stack(), if necessary.
* Do not include "BUG"/"WARNING" in format strings manually to make these
* conditions distinguishable from kernel issues.
*
* Use the versions with printk format strings to provide better diagnostics.
*/
#define __WARN() do { \
fprintf(stderr, "WARNING: failure at %s:%d/%s()!\n", __FILE__, __LINE__, __func__); \
} while (0)
#define __WARN_printf(arg...) do { \
vfprintf(stderr, arg); \
} while (0)
#define WARN_ON(condition) ({ \
int __ret_warn_on = !!(condition); \
if (unlikely(__ret_warn_on)) \
__WARN(); \
unlikely(__ret_warn_on); \
})
#define WARN(condition, format...) ({ \
int __ret_warn_on = !!(condition); \
if (unlikely(__ret_warn_on)) \
__WARN_printf(format); \
unlikely(__ret_warn_on); \
})
#endif /* _BR_BUG_H */

30
include/container-of.h Normal file
View File

@@ -0,0 +1,30 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* adaptation of Linux kernel's <linux/container_of.h>
*/
#ifndef _BR_CONTAINER_OF_H
#define _BR_CONTAINER_OF_H
/* Are two types/vars the same type (ignoring qualifiers)? */
#define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
/**
* typeof_member -
*/
#define typeof_member(T, m) typeof(((T*)0)->m)
/**
* container_of - cast a member of a structure out to the containing structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/
#define container_of(ptr, type, member) ({ \
void *__mptr = (void *)(ptr); \
_Static_assert(__same_type(*(ptr), ((type *)0)->member) || \
__same_type(*(ptr), void), \
"pointer type mismatch in container_of()"); \
((type *)(__mptr - offsetof(type, member))); })
#endif /* BR_CONTAINER_OF_H */

115
include/debug.h Normal file
View File

@@ -0,0 +1,115 @@
/* debug.h - debug/log management.
*
* Copyright (C) 2021-2023 Bruno Raoult ("br")
* Licensed under the GNU General Public License v3.0 or later.
* Some rights reserved. See COPYING.
*
* You should have received a copy of the GNU General Public License along with this
* program. If not, see <https://www.gnu.org/licenses/gpl-3.0-standalone.html>.
*
* SPDX-License-Identifier: GPL-3.0-or-later <https://spdx.org/licenses/GPL-3.0-or-later.html>
*
*/
#ifndef DEBUG_H
#define DEBUG_H
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <br.h>
#define NANOSEC 1000000000 /* nano sec in sec */
#define MILLISEC 1000000 /* milli sec in sec */
#define _printf __attribute__ ((format (printf, 6, 7)))
#ifdef DEBUG_DEBUG
void debug_init(int level, FILE *stream, bool flush);
void debug_level_set(int level);
int debug_level_get(void);
void debug_stream_set(FILE *stream);
long long debug_timer_elapsed(void);
void debug_flush_set(bool flush);
void _printf debug(int level, bool timestamp,
int indent, const char *src,
int line, const char *fmt, ...);
#else /* DEBUG_DEBUG */
static inline void debug_init(__unused int level,
__unused FILE *stream,
__unused bool flush) {}
static inline void debug_level_set(__unused int level) {}
static inline int debug_level_get(void) {return 0;}
static inline void debug_stream_set(__unused FILE *stream) {}
static inline long long debug_timer_elapsed(void) {return 0LL;}
static inline void debug_flush_set(__unused bool level) {}
static inline void _printf debug(__unused int level, __unused bool timestamp,
__unused int indent, __unused const char *src,
__unused int line, __unused const char *fmt, ...) {}
#endif /* DEBUG_DEBUG */
#undef _printf
/**
* log - simple log (no function name, no indent, no timestamp)
* @level: log level
* @fmt: printf format string
* @args: subsequent arguments to printf
*/
#define log(level, fmt, args...) \
debug((level), false, 0, NULL, 0, fmt, ##args)
/**
* log_i - log with indent (no function name, no timestamp)
* @level: log level
* @fmt: printf format string
* @args: subsequent arguments to printf
*
* Output example:
* >>>>val=2
*/
#define log_i(level, fmt, args...) \
debug((level), false, (level), NULL, 0, fmt, ##args)
/**
* log_f - log with function name (no indent name, no timestamp)
* @level: log level
* @fmt: printf format string
* @args: subsequent arguments to printf
*
* Output example:
* [function] val=2
*/
#define log_f(level, fmt, args...) \
debug((level), false, 0, __func__, 0, fmt, ##args)
/**
* log_if - log with function name and line number (no indent name, no timestamp)
* @level: log level
* @fmt: printf format string
* @args: subsequent arguments to printf
*
* Output example:
* >>>> [function:15] val=2
*/
#define log_if(level, fmt, args...) \
debug((level), false, (level), __func__, __LINE__, fmt, ##args)
/**
* log_it - log with function name, line number, indent, and timestamp
* @level: log level
* @fmt: printf format string
* @args: subsequent arguments to printf
*
* Output example:
* >>>> [function:15] val=2
*/
#define log_it(level, fmt, args...) \
debug((level), true, (level), __func__, __LINE__, fmt, ##args)
#endif /* DEBUG_H */

172
include/hash.h Normal file
View File

@@ -0,0 +1,172 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BR_HASH_H
#define _BR_HASH_H
/* adaptation of Linux kernel's <linux/hash.h> and <linux/stringhash.h>
*/
/* Fast hashing routine for ints, longs and pointers.
(C) 2002 Nadia Yvette Chambers, IBM */
#include <asm/bitsperlong.h>
#include "bits.h"
#include "br.h"
/*
* The "GOLDEN_RATIO_PRIME" is used in ifs/btrfs/brtfs_inode.h and
* fs/inode.c. It's not actually prime any more (the previous primes
* were actively bad for hashing), but the name remains.
*/
#if __BITS_PER_LONG == 32
#define GOLDEN_RATIO_PRIME GOLDEN_RATIO_32
#define hash_long(val, bits) hash_32(val, bits)
#elif __BITS_PER_LONG == 64
#define hash_long(val, bits) hash_64(val, bits)
#define GOLDEN_RATIO_PRIME GOLDEN_RATIO_64
#else
#error Wordsize not 32 or 64
#endif
/*
* This hash multiplies the input by a large odd number and takes the
* high bits. Since multiplication propagates changes to the most
* significant end only, it is essential that the high bits of the
* product be used for the hash value.
*
* Chuck Lever verified the effectiveness of this technique:
* http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf
*
* Although a random odd number will do, it turns out that the golden
* ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice
* properties. (See Knuth vol 3, section 6.4, exercise 9.)
*
* These are the negative, (1 - phi) = phi**2 = (3 - sqrt(5))/2,
* which is very slightly easier to multiply by and makes no
* difference to the hash distribution.
*/
#define GOLDEN_RATIO_32 0x61C88647
#define GOLDEN_RATIO_64 0x61C8864680B583EBull
/*
* The _generic versions exist only so lib/test_hash.c can compare
* the arch-optimized versions with the generic.
*
* Note that if you change these, any <asm/hash.h> that aren't updated
* to match need to have their HAVE_ARCH_* define values updated so the
* self-test will not false-positive.
*/
#ifndef HAVE_ARCH__HASH_32
#define __hash_32 __hash_32_generic
#endif
static inline u32 __hash_32_generic(u32 val)
{
return val * GOLDEN_RATIO_32;
}
static inline u32 hash_32(u32 val, unsigned int bits)
{
/* High bits are more random, so use them. */
return __hash_32(val) >> (32 - bits);
}
#ifndef HAVE_ARCH_HASH_64
#define hash_64 hash_64_generic
#endif
static __always_inline u32 hash_64_generic(u64 val, unsigned int bits)
{
#if __BITS_PER_LONG == 64
/* 64x64-bit multiply is efficient on all 64-bit processors */
return val * GOLDEN_RATIO_64 >> (64 - bits);
#else
/* Hash 64 bits using only 32x32-bit multiply. */
return hash_32((u32)val ^ __hash_32(val >> 32), bits);
#endif
}
static inline u32 hash_ptr(const void *ptr, unsigned int bits)
{
return hash_long((unsigned long)ptr, bits);
}
/* This really should be called fold32_ptr; it does no hashing to speak of. */
static inline u32 hash32_ptr(const void *ptr)
{
unsigned long val = (unsigned long)ptr;
#if __BITS_PER_LONG == 64
val ^= (val >> 32);
#endif
return (u32)val;
}
/*
* Routines for hashing strings of bytes to a 32-bit hash value.
*
* These hash functions are NOT GUARANTEED STABLE between kernel
* versions, architectures, or even repeated boots of the same kernel.
* (E.g. they may depend on boot-time hardware detection or be
* deliberately randomized.)
*
* They are also not intended to be secure against collisions caused by
* malicious inputs; much slower hash functions are required for that.
*
* They are optimized for pathname components, meaning short strings.
* Even if a majority of files have longer names, the dynamic profile of
* pathname components skews short due to short directory names.
* (E.g. /usr/lib/libsesquipedalianism.so.3.141.)
*/
/*
* Version 1: one byte at a time. Example of use:
*
* unsigned long hash = init_name_hash;
* while (*p)
* hash = partial_name_hash(tolower(*p++), hash);
* hash = end_name_hash(hash);
*
* Although this is designed for bytes, fs/hfsplus/unicode.c
* abuses it to hash 16-bit values.
*/
/* Hash courtesy of the R5 hash in reiserfs modulo sign bits */
#define init_name_hash(salt) (unsigned long)(salt)
/* partial hash update function. Assume roughly 4 bits per character */
static inline unsigned long
partial_name_hash(unsigned long c, unsigned long prevhash)
{
return (prevhash + (c << 4) + (c >> 4)) * 11;
}
/*
* Finally: cut down the number of bits to a int value (and try to avoid
* losing bits). This also has the property (wanted by the dcache)
* that the msbits make a good hash table index.
*/
static inline unsigned int end_name_hash(unsigned long hash)
{
return hash_long(hash, 32);
}
/*
* Version 2: One word (32 or 64 bits) at a time.
* If CONFIG_DCACHE_WORD_ACCESS is defined (meaning <asm/word-at-a-time.h>
* exists, which describes major Linux platforms like x86 and ARM), then
* this computes a different hash function much faster.
*
* If not set, this falls back to a wrapper around the preceding.
*/
extern unsigned int __pure hash_string(const void *salt, const char *, unsigned int);
/*
* A hash_len is a u64 with the hash of a string in the low
* half and the length in the high half.
*/
#define hashlen_hash(hashlen) ((u32)(hashlen))
#define hashlen_len(hashlen) ((u32)((hashlen) >> 32))
#define hashlen_create(hash, len) ((u64)(len)<<32 | (u32)(hash))
/* Return the "hash_len" (hash and length) of a null-terminated string */
extern u64 __pure hashlen_string(const void *salt, const char *name);
#endif /* _BR_HASH_H */

202
include/hashtable.h Normal file
View File

@@ -0,0 +1,202 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* adaptation of Linux kernel's <linux/hashtable.h>
*/
/*
* Statically sized hash table implementation
* (C) 2012 Sasha Levin <levinsasha928@gmail.com>
*/
#ifndef _LINUX_HASHTABLE_H
#define _LINUX_HASHTABLE_H
#include "list.h"
#include "hash.h"
//#include <linux/rculist.h>
#define DEFINE_HASHTABLE(name, bits) \
struct hlist_head name[1 << (bits)] = \
{ [0 ... ((1 << (bits)) - 1)] = HLIST_HEAD_INIT }
#define DEFINE_READ_MOSTLY_HASHTABLE(name, bits) \
struct hlist_head name[1 << (bits)] __read_mostly = \
{ [0 ... ((1 << (bits)) - 1)] = HLIST_HEAD_INIT }
#define DECLARE_HASHTABLE(name, bits) \
struct hlist_head name[1 << (bits)]
#define HASH_SIZE(name) (ARRAY_SIZE(name))
#define HASH_BITS(name) ilog2(HASH_SIZE(name))
/* Use hash_32 when possible to allow for fast 32bit hashing in 64bit kernels. */
#define hash_min(val, bits) \
(sizeof(val) <= 4 ? hash_32(val, bits) : hash_long(val, bits))
static inline void __hash_init(struct hlist_head *ht, unsigned int sz)
{
unsigned int i;
for (i = 0; i < sz; i++)
INIT_HLIST_HEAD(&ht[i]);
}
/**
* hash_init - initialize a hash table
* @hashtable: hashtable to be initialized
*
* Calculates the size of the hashtable from the given parameter, otherwise
* same as hash_init_size.
*
* This has to be a macro since HASH_BITS() will not work on pointers since
* it calculates the size during preprocessing.
*/
#define hash_init(hashtable) __hash_init(hashtable, HASH_SIZE(hashtable))
/**
* hash_add - add an object to a hashtable
* @hashtable: hashtable to add to
* @node: the &struct hlist_node of the object to be added
* @key: the key of the object to be added
*/
#define hash_add(hashtable, node, key) \
hlist_add_head(node, &hashtable[hash_min(key, HASH_BITS(hashtable))])
/**
* hash_add_rcu - add an object to a rcu enabled hashtable
* @hashtable: hashtable to add to
* @node: the &struct hlist_node of the object to be added
* @key: the key of the object to be added
*/
#define hash_add_rcu(hashtable, node, key) \
hlist_add_head_rcu(node, &hashtable[hash_min(key, HASH_BITS(hashtable))])
/**
* hash_hashed - check whether an object is in any hashtable
* @node: the &struct hlist_node of the object to be checked
*/
static inline bool hash_hashed(struct hlist_node *node)
{
return !hlist_unhashed(node);
}
static inline bool __hash_empty(struct hlist_head *ht, unsigned int sz)
{
unsigned int i;
for (i = 0; i < sz; i++)
if (!hlist_empty(&ht[i]))
return false;
return true;
}
/**
* hash_empty - check whether a hashtable is empty
* @hashtable: hashtable to check
*
* This has to be a macro since HASH_BITS() will not work on pointers since
* it calculates the size during preprocessing.
*/
#define hash_empty(hashtable) __hash_empty(hashtable, HASH_SIZE(hashtable))
/**
* hash_del - remove an object from a hashtable
* @node: &struct hlist_node of the object to remove
*/
static inline void hash_del(struct hlist_node *node)
{
hlist_del_init(node);
}
/**
* hash_for_each - iterate over a hashtable
* @name: hashtable to iterate
* @bkt: integer to use as bucket loop cursor
* @obj: the type * to use as a loop cursor for each entry
* @member: the name of the hlist_node within the struct
*/
#define hash_for_each(name, bkt, obj, member) \
for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\
(bkt)++)\
hlist_for_each_entry(obj, &name[bkt], member)
/**
* hash_for_each_rcu - iterate over a rcu enabled hashtable
* @name: hashtable to iterate
* @bkt: integer to use as bucket loop cursor
* @obj: the type * to use as a loop cursor for each entry
* @member: the name of the hlist_node within the struct
*/
#define hash_for_each_rcu(name, bkt, obj, member) \
for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\
(bkt)++)\
hlist_for_each_entry_rcu(obj, &name[bkt], member)
/**
* hash_for_each_safe - iterate over a hashtable safe against removal of
* hash entry
* @name: hashtable to iterate
* @bkt: integer to use as bucket loop cursor
* @tmp: a &struct hlist_node used for temporary storage
* @obj: the type * to use as a loop cursor for each entry
* @member: the name of the hlist_node within the struct
*/
#define hash_for_each_safe(name, bkt, tmp, obj, member) \
for ((bkt) = 0, obj = NULL; obj == NULL && (bkt) < HASH_SIZE(name);\
(bkt)++)\
hlist_for_each_entry_safe(obj, tmp, &name[bkt], member)
/**
* hash_for_each_possible - iterate over all possible objects hashing to the
* same bucket
* @name: hashtable to iterate
* @obj: the type * to use as a loop cursor for each entry
* @member: the name of the hlist_node within the struct
* @key: the key of the objects to iterate over
*/
#define hash_for_each_possible(name, obj, member, key) \
hlist_for_each_entry(obj, &name[hash_min(key, HASH_BITS(name))], member)
/**
* hash_for_each_possible_rcu - iterate over all possible objects hashing to the
* same bucket in an rcu enabled hashtable
* @name: hashtable to iterate
* @obj: the type * to use as a loop cursor for each entry
* @member: the name of the hlist_node within the struct
* @key: the key of the objects to iterate over
*/
#define hash_for_each_possible_rcu(name, obj, member, key, cond...) \
hlist_for_each_entry_rcu(obj, &name[hash_min(key, HASH_BITS(name))],\
member, ## cond)
/**
* hash_for_each_possible_rcu_notrace - iterate over all possible objects hashing
* to the same bucket in an rcu enabled hashtable in a rcu enabled hashtable
* @name: hashtable to iterate
* @obj: the type * to use as a loop cursor for each entry
* @member: the name of the hlist_node within the struct
* @key: the key of the objects to iterate over
*
* This is the same as hash_for_each_possible_rcu() except that it does
* not do any RCU debugging or tracing.
*/
#define hash_for_each_possible_rcu_notrace(name, obj, member, key) \
hlist_for_each_entry_rcu_notrace(obj, \
&name[hash_min(key, HASH_BITS(name))], member)
/**
* hash_for_each_possible_safe - iterate over all possible objects hashing to the
* same bucket safe against removals
* @name: hashtable to iterate
* @obj: the type * to use as a loop cursor for each entry
* @tmp: a &struct hlist_node used for temporary storage
* @member: the name of the hlist_node within the struct
* @key: the key of the objects to iterate over
*/
#define hash_for_each_possible_safe(name, obj, tmp, member, key) \
hlist_for_each_entry_safe(obj, tmp,\
&name[hash_min(key, HASH_BITS(name))], member)
#endif

18
include/likely.h Normal file
View File

@@ -0,0 +1,18 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* taken from Kernel's <linux/compiler.h
*/
#ifndef __LIKELY_H
#define __LIKELY_H
/* See https://kernelnewbies.org/FAQ/LikelyUnlikely
*
* In 2 words:
* "You should use it [likely() and unlikely()] only in cases when the likeliest
* branch is very very very likely, or when the unlikeliest branch is very very
* very unlikely."
*/
# define likely(x) __builtin_expect(!!(x), 1)
# define unlikely(x) __builtin_expect(!!(x), 0)
#endif /* __LIKELY_H */

992
include/list.h Normal file
View File

@@ -0,0 +1,992 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* adaptation of kernel's <linux/list.h>
*
*/
#ifndef __BR_LIST_H
#define __BR_LIST_H
#include <stddef.h>
#include <stdbool.h>
#include "rwonce.h"
#include "container-of.h"
/************ originally in <include/linux/types.h> */
struct list_head {
struct list_head *next, *prev;
};
struct hlist_head {
struct hlist_node *first;
};
struct hlist_node {
struct hlist_node *next, **pprev;
};
/************ originally in <include/linux/poison.h> */
# define POISON_POINTER_DELTA 0
/* These are non-NULL pointers that will result in page faults
* under normal circumstances, used to verify that nobody uses
* non-initialized list entries.
*/
#define LIST_POISON1 ((void *) 0x100 + POISON_POINTER_DELTA)
#define LIST_POISON2 ((void *) 0x200 + POISON_POINTER_DELTA)
/*
* Circular doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)
/**
* INIT_LIST_HEAD - Initialize a list_head structure
* @list: list_head structure to be initialized.
*
* Initializes the list_head to point to itself. If it is a list header,
* the result is an empty list.
*/
static inline void INIT_LIST_HEAD(struct list_head *list)
{
WRITE_ONCE(list->next, list);
list->prev = list;
}
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
WRITE_ONCE(prev->next, new);
}
/**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void list_add(struct list_head *new, struct list_head *head)
{
__list_add(new, head, head->next);
}
/**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
__list_add(new, head->prev, head);
}
/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
WRITE_ONCE(prev->next, next);
}
/*
* Delete a list entry and clear the 'prev' pointer.
*
* This is a special-purpose list clearing method used in the networking code
* for lists allocated as per-cpu, where we don't want to incur the extra
* WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
* needs to check the node 'prev' pointer instead of calling list_empty().
*/
static inline void __list_del_clearprev(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->prev = NULL;
}
static inline void __list_del_entry(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
}
/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/
static inline void list_del(struct list_head *entry)
{
__list_del_entry(entry);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}
/**
* list_replace - replace old entry by new one
* @old : the element to be replaced
* @new : the new element to insert
*
* If @old was empty, it will be overwritten.
*/
static inline void list_replace(struct list_head *old,
struct list_head *new)
{
new->next = old->next;
new->next->prev = new;
new->prev = old->prev;
new->prev->next = new;
}
/**
* list_replace_init - replace old entry by new one and initialize the old one
* @old : the element to be replaced
* @new : the new element to insert
*
* If @old was empty, it will be overwritten.
*/
static inline void list_replace_init(struct list_head *old,
struct list_head *new)
{
list_replace(old, new);
INIT_LIST_HEAD(old);
}
/**
* list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
* @entry1: the location to place entry2
* @entry2: the location to place entry1
*/
static inline void list_swap(struct list_head *entry1,
struct list_head *entry2)
{
struct list_head *pos = entry2->prev;
list_del(entry2);
list_replace(entry1, entry2);
if (pos == entry1)
pos = entry2;
list_add(entry1, pos);
}
/**
* list_del_init - deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
static inline void list_del_init(struct list_head *entry)
{
__list_del_entry(entry);
INIT_LIST_HEAD(entry);
}
/**
* list_move - delete from one list and add as another's head
* @list: the entry to move
* @head: the head that will precede our entry
*/
static inline void list_move(struct list_head *list, struct list_head *head)
{
__list_del_entry(list);
list_add(list, head);
}
/**
* list_move_tail - delete from one list and add as another's tail
* @list: the entry to move
* @head: the head that will follow our entry
*/
static inline void list_move_tail(struct list_head *list,
struct list_head *head)
{
__list_del_entry(list);
list_add_tail(list, head);
}
/**
* list_bulk_move_tail - move a subsection of a list to its tail
* @head: the head that will follow our entry
* @first: first entry to move
* @last: last entry to move, can be the same as first
*
* Move all entries between @first and including @last before @head.
* All three entries must belong to the same linked list.
*/
static inline void list_bulk_move_tail(struct list_head *head,
struct list_head *first,
struct list_head *last)
{
first->prev->next = last->next;
last->next->prev = first->prev;
head->prev->next = first;
first->prev = head->prev;
last->next = head;
head->prev = last;
}
/**
* list_is_first -- tests whether @list is the first entry in list @head
* @list: the entry to test
* @head: the head of the list
*/
static inline int list_is_first(const struct list_head *list,
const struct list_head *head)
{
return list->prev == head;
}
/**
* list_is_last - tests whether @list is the last entry in list @head
* @list: the entry to test
* @head: the head of the list
*/
static inline int list_is_last(const struct list_head *list,
const struct list_head *head)
{
return list->next == head;
}
/**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(const struct list_head *head)
{
return READ_ONCE(head->next) == head;
}
/**
* list_rotate_left - rotate the list to the left
* @head: the head of the list
*/
static inline void list_rotate_left(struct list_head *head)
{
struct list_head *first;
if (!list_empty(head)) {
first = head->next;
list_move_tail(first, head);
}
}
/**
* list_rotate_to_front() - Rotate list to specific item.
* @list: The desired new front of the list.
* @head: The head of the list.
*
* Rotates list so that @list becomes the new front of the list.
*/
static inline void list_rotate_to_front(struct list_head *list,
struct list_head *head)
{
/*
* Deletes the list head from the list denoted by @head and
* places it as the tail of @list, this effectively rotates the
* list so that @list is at the front.
*/
list_move_tail(head, list);
}
/**
* list_is_singular - tests whether a list has just one entry.
* @head: the list to test.
*/
static inline int list_is_singular(const struct list_head *head)
{
return !list_empty(head) && (head->next == head->prev);
}
static inline void __list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
struct list_head *new_first = entry->next;
list->next = head->next;
list->next->prev = list;
list->prev = entry;
entry->next = list;
head->next = new_first;
new_first->prev = head;
}
/**
* list_cut_position - cut a list into two
* @list: a new list to add all removed entries
* @head: a list with entries
* @entry: an entry within head, could be the head itself
* and if so we won't cut the list
*
* This helper moves the initial part of @head, up to and
* including @entry, from @head to @list. You should
* pass on @entry an element you know is on @head. @list
* should be an empty list or a list you do not care about
* losing its data.
*
*/
static inline void list_cut_position(struct list_head *list,
struct list_head *head, struct list_head *entry)
{
if (list_empty(head))
return;
if (list_is_singular(head) &&
(head->next != entry && head != entry))
return;
if (entry == head)
INIT_LIST_HEAD(list);
else
__list_cut_position(list, head, entry);
}
/**
* list_cut_before - cut a list into two, before given entry
* @list: a new list to add all removed entries
* @head: a list with entries
* @entry: an entry within head, could be the head itself
*
* This helper moves the initial part of @head, up to but
* excluding @entry, from @head to @list. You should pass
* in @entry an element you know is on @head. @list should
* be an empty list or a list you do not care about losing
* its data.
* If @entry == @head, all entries on @head are moved to
* @list.
*/
static inline void list_cut_before(struct list_head *list,
struct list_head *head,
struct list_head *entry)
{
if (head->next == entry) {
INIT_LIST_HEAD(list);
return;
}
list->next = head->next;
list->next->prev = list;
list->prev = entry->prev;
list->prev->next = list;
head->next = entry;
entry->prev = head;
}
static inline void __list_splice(const struct list_head *list,
struct list_head *prev,
struct list_head *next)
{
struct list_head *first = list->next;
struct list_head *last = list->prev;
first->prev = prev;
prev->next = first;
last->next = next;
next->prev = last;
}
/**
* list_splice - join two lists, this is designed for stacks
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice(const struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head, head->next);
}
/**
* list_splice_tail - join two lists, each list being a queue
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice_tail(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head->prev, head);
}
/**
* list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static inline void list_splice_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head, head->next);
INIT_LIST_HEAD(list);
}
}
/**
* list_splice_tail_init - join two lists and reinitialise the emptied list
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* Each of the lists is a queue.
* The list at @list is reinitialised
*/
static inline void list_splice_tail_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head->prev, head);
INIT_LIST_HEAD(list);
}
}
/**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_head within the struct.
*/
#define list_entry(ptr, type, member) \
container_of(ptr, type, member)
/**
* list_first_entry - get the first element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_head within the struct.
*
* Note, that list is expected to be not empty.
*/
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member)
/**
* list_last_entry - get the last element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_head within the struct.
*
* Note, that list is expected to be not empty.
*/
#define list_last_entry(ptr, type, member) \
list_entry((ptr)->prev, type, member)
/**
* list_first_entry_or_null - get the first element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_head within the struct.
*
* Note that if the list is empty, it returns NULL.
*/
#define list_first_entry_or_null(ptr, type, member) ({ \
struct list_head *head__ = (ptr); \
struct list_head *pos__ = READ_ONCE(head__->next); \
pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
})
/**
* list_next_entry - get the next element in list
* @pos: the type * to cursor
* @member: the name of the list_head within the struct.
*/
#define list_next_entry(pos, member) \
list_entry((pos)->member.next, __typeof__(*(pos)), member)
/**
* list_prev_entry - get the prev element in list
* @pos: the type * to cursor
* @member: the name of the list_head within the struct.
*/
#define list_prev_entry(pos, member) \
list_entry((pos)->member.prev, __typeof__(*(pos)), member)
/**
* list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
/**
* list_for_each_continue - continue iteration over a list
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*
* Continue to iterate over a list, continuing after the current position.
*/
#define list_for_each_continue(pos, head) \
for (pos = pos->next; pos != (head); pos = pos->next)
/**
* list_for_each_prev - iterate over a list backwards
* @pos: the &struct list_head to use as a loop cursor.
* @head: the head for your list.
*/
#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; pos != (head); pos = pos->prev)
/**
* list_for_each_safe - iterate over a list safe against removal of list entry
* @pos: the &struct list_head to use as a loop cursor.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)
/**
* list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
* @pos: the &struct list_head to use as a loop cursor.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_prev_safe(pos, n, head) \
for (pos = (head)->prev, n = pos->prev; \
pos != (head); \
pos = n, n = pos->prev)
/**
* list_entry_is_head - test if the entry points to the head of the list
* @pos: the type * to cursor
* @head: the head for your list.
* @member: the name of the list_head within the struct.
*/
#define list_entry_is_head(pos, head, member) \
(&pos->member == (head))
/**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_head within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_first_entry(head, __typeof__(*pos), member); \
!list_entry_is_head(pos, head, member); \
pos = list_next_entry(pos, member))
/**
* list_for_each_entry_reverse - iterate backwards over list of given type.
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_head within the struct.
*/
#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_last_entry(head, __typeof__(*pos), member); \
!list_entry_is_head(pos, head, member); \
pos = list_prev_entry(pos, member))
/**
* list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
* @pos: the type * to use as a start point
* @head: the head of the list
* @member: the name of the list_head within the struct.
*
* Prepares a pos entry for use as a start point in list_for_each_entry_continue().
*/
#define list_prepare_entry(pos, head, member) \
((pos) ? : list_entry(head, __typeof__(*pos), member))
/**
* list_for_each_entry_continue - continue iteration over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_head within the struct.
*
* Continue to iterate over list of given type, continuing after
* the current position.
*/
#define list_for_each_entry_continue(pos, head, member) \
for (pos = list_next_entry(pos, member); \
!list_entry_is_head(pos, head, member); \
pos = list_next_entry(pos, member))
/**
* list_for_each_entry_continue_reverse - iterate backwards from the given point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_head within the struct.
*
* Start to iterate over list of given type backwards, continuing after
* the current position.
*/
#define list_for_each_entry_continue_reverse(pos, head, member) \
for (pos = list_prev_entry(pos, member); \
!list_entry_is_head(pos, head, member); \
pos = list_prev_entry(pos, member))
/**
* list_for_each_entry_from - iterate over list of given type from the current point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_head within the struct.
*
* Iterate over list of given type, continuing from current position.
*/
#define list_for_each_entry_from(pos, head, member) \
for (; !list_entry_is_head(pos, head, member); \
pos = list_next_entry(pos, member))
/**
* list_for_each_entry_from_reverse - iterate backwards over list of given type
* from the current point
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_head within the struct.
*
* Iterate backwards over list of given type, continuing from current position.
*/
#define list_for_each_entry_from_reverse(pos, head, member) \
for (; !list_entry_is_head(pos, head, member); \
pos = list_prev_entry(pos, member))
/**
* list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_head within the struct.
*/
#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_first_entry(head, __typeof__(*pos), member), \
n = list_next_entry(pos, member); \
!list_entry_is_head(pos, head, member); \
pos = n, n = list_next_entry(n, member))
/**
* list_for_each_entry_safe_continue - continue list iteration safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_head within the struct.
*
* Iterate over list of given type, continuing after current point,
* safe against removal of list entry.
*/
#define list_for_each_entry_safe_continue(pos, n, head, member) \
for (pos = list_next_entry(pos, member), \
n = list_next_entry(pos, member); \
!list_entry_is_head(pos, head, member); \
pos = n, n = list_next_entry(n, member))
/**
* list_for_each_entry_safe_from - iterate over list from current point safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_head within the struct.
*
* Iterate over list of given type from current point, safe against
* removal of list entry.
*/
#define list_for_each_entry_safe_from(pos, n, head, member) \
for (n = list_next_entry(pos, member); \
!list_entry_is_head(pos, head, member); \
pos = n, n = list_next_entry(n, member))
/**
* list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_head within the struct.
*
* Iterate backwards over list of given type, safe against removal
* of list entry.
*/
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
for (pos = list_last_entry(head, __typeof__(*pos), member), \
n = list_prev_entry(pos, member); \
!list_entry_is_head(pos, head, member); \
pos = n, n = list_prev_entry(n, member))
/**
* list_safe_reset_next - reset a stale list_for_each_entry_safe loop
* @pos: the loop cursor used in the list_for_each_entry_safe loop
* @n: temporary storage used in list_for_each_entry_safe
* @member: the name of the list_head within the struct.
*
* list_safe_reset_next is not safe to use in general if the list may be
* modified concurrently (eg. the lock is dropped in the loop body). An
* exception to this is if the cursor element (pos) is pinned in the list,
* and list_safe_reset_next is called after re-taking the lock and before
* completing the current iteration of the loop body.
*/
#define list_safe_reset_next(pos, n, member) \
n = list_next_entry(pos, member)
/*
* Double linked lists with a single pointer list head.
* Mostly useful for hash tables where the two pointer list head is
* too wasteful.
* You lose the ability to access the tail in O(1).
*/
#define HLIST_HEAD_INIT { .first = NULL }
#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
static inline void INIT_HLIST_NODE(struct hlist_node *h)
{
h->next = NULL;
h->pprev = NULL;
}
/**
* hlist_unhashed - Has node been removed from list and reinitialized?
* @h: Node to be checked
*
* Not that not all removal functions will leave a node in unhashed
* state. For example, hlist_nulls_del_init_rcu() does leave the
* node in unhashed state, but hlist_nulls_del() does not.
*/
static inline int hlist_unhashed(const struct hlist_node *h)
{
return !h->pprev;
}
/**
* hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
* @h: Node to be checked
*
* This variant of hlist_unhashed() must be used in lockless contexts
* to avoid potential load-tearing. The READ_ONCE() is paired with the
* various WRITE_ONCE() in hlist helpers that are defined below.
*/
static inline int hlist_unhashed_lockless(const struct hlist_node *h)
{
return !READ_ONCE(h->pprev);
}
/**
* hlist_empty - Is the specified hlist_head structure an empty hlist?
* @h: Structure to check.
*/
static inline int hlist_empty(const struct hlist_head *h)
{
return !READ_ONCE(h->first);
}
static inline void __hlist_del(struct hlist_node *n)
{
struct hlist_node *next = n->next;
struct hlist_node **pprev = n->pprev;
WRITE_ONCE(*pprev, next);
if (next)
WRITE_ONCE(next->pprev, pprev);
}
/**
* hlist_del - Delete the specified hlist_node from its list
* @n: Node to delete.
*
* Note that this function leaves the node in hashed state. Use
* hlist_del_init() or similar instead to unhash @n.
*/
static inline void hlist_del(struct hlist_node *n)
{
__hlist_del(n);
n->next = LIST_POISON1;
n->pprev = LIST_POISON2;
}
/**
* hlist_del_init - Delete the specified hlist_node from its list and initialize
* @n: Node to delete.
*
* Note that this function leaves the node in unhashed state.
*/
static inline void hlist_del_init(struct hlist_node *n)
{
if (!hlist_unhashed(n)) {
__hlist_del(n);
INIT_HLIST_NODE(n);
}
}
/**
* hlist_add_head - add a new entry at the beginning of the hlist
* @n: new entry to be added
* @h: hlist head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
{
struct hlist_node *first = h->first;
WRITE_ONCE(n->next, first);
if (first)
WRITE_ONCE(first->pprev, &n->next);
WRITE_ONCE(h->first, n);
WRITE_ONCE(n->pprev, &h->first);
}
/**
* hlist_add_before - add a new entry before the one specified
* @n: new entry to be added
* @next: hlist node to add it before, which must be non-NULL
*/
static inline void hlist_add_before(struct hlist_node *n,
struct hlist_node *next)
{
WRITE_ONCE(n->pprev, next->pprev);
WRITE_ONCE(n->next, next);
WRITE_ONCE(next->pprev, &n->next);
WRITE_ONCE(*(n->pprev), n);
}
/**
* hlist_add_behind - add a new entry after the one specified
* @n: new entry to be added
* @prev: hlist node to add it after, which must be non-NULL
*/
static inline void hlist_add_behind(struct hlist_node *n,
struct hlist_node *prev)
{
WRITE_ONCE(n->next, prev->next);
WRITE_ONCE(prev->next, n);
WRITE_ONCE(n->pprev, &prev->next);
if (n->next)
WRITE_ONCE(n->next->pprev, &n->next);
}
/**
* hlist_add_fake - create a fake hlist consisting of a single headless node
* @n: Node to make a fake list out of
*
* This makes @n appear to be its own predecessor on a headless hlist.
* The point of this is to allow things like hlist_del() to work correctly
* in cases where there is no list.
*/
static inline void hlist_add_fake(struct hlist_node *n)
{
n->pprev = &n->next;
}
/**
* hlist_fake: Is this node a fake hlist?
* @h: Node to check for being a self-referential fake hlist.
*/
static inline bool hlist_fake(struct hlist_node *h)
{
return h->pprev == &h->next;
}
/**
* hlist_is_singular_node - is node the only element of the specified hlist?
* @n: Node to check for singularity.
* @h: Header for potentially singular list.
*
* Check whether the node is the only node of the head without
* accessing head, thus avoiding unnecessary cache misses.
*/
static inline bool
hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
{
return !n->next && n->pprev == &h->first;
}
/**
* hlist_move_list - Move an hlist
* @old: hlist_head for old list.
* @new: hlist_head for new list.
*
* Move a list from one list head to another. Fixup the pprev
* reference of the first entry if it exists.
*/
static inline void hlist_move_list(struct hlist_head *old,
struct hlist_head *new)
{
new->first = old->first;
if (new->first)
new->first->pprev = &new->first;
old->first = NULL;
}
#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
#define hlist_for_each(pos, head) \
for (pos = (head)->first; pos ; pos = pos->next)
#define hlist_for_each_safe(pos, n, head) \
for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
pos = n)
#define hlist_entry_safe(ptr, type, member) \
({ __typeof__(ptr) ____ptr = (ptr); \
____ptr ? hlist_entry(____ptr, type, member) : NULL; \
})
/**
* hlist_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry(pos, head, member) \
for (pos = hlist_entry_safe((head)->first, __typeof__(*(pos)), member); \
pos; \
pos = hlist_entry_safe((pos)->member.next, __typeof__(*(pos)), member))
/**
* hlist_for_each_entry_continue - iterate over a hlist continuing after current point
* @pos: the type * to use as a loop cursor.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_continue(pos, member) \
for (pos = hlist_entry_safe((pos)->member.next, __typeof__(*(pos)), member); \
pos; \
pos = hlist_entry_safe((pos)->member.next, __typeof__(*(pos)), member))
/**
* hlist_for_each_entry_from - iterate over a hlist continuing from current point
* @pos: the type * to use as a loop cursor.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_from(pos, member) \
for (; pos; \
pos = hlist_entry_safe((pos)->member.next, __typeof__(*(pos)), member))
/**
* hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @pos: the type * to use as a loop cursor.
* @n: a &struct hlist_node to use as temporary storage
* @head: the head for your list.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_safe(pos, n, head, member) \
for (pos = hlist_entry_safe((head)->first, __typeof__(*pos), member); \
pos && ({ n = pos->member.next; 1; }); \
pos = hlist_entry_safe(n, __typeof__(*pos), member))
#endif /* __BR_LIST_H */

53
include/pjwhash-inline.h Normal file
View File

@@ -0,0 +1,53 @@
/* pjwhash-inline.h - PJW hash function, inline version.
*
* Copyright (C) 2021-2022 Bruno Raoult ("br")
* Licensed under the GNU General Public License v3.0 or later.
* Some rights reserved. See COPYING.
*
* You should have received a copy of the GNU General Public License along with this
* program. If not, see <https://www.gnu.org/licenses/gpl-3.0-standalone.html>.
*
* SPDX-License-Identifier: GPL-3.0-or-later <https://spdx.org/licenses/GPL-3.0-or-later.html>
*
*/
#ifndef _PJWHASH_INLINE_H
#define _PJWHASH_INLINE_H
#include "bits.h"
#define THREE_QUARTERS ((int) ((BITS_PER_INT * 3) / 4))
#define ONE_EIGHTH ((int) (BITS_PER_INT / 8))
#define HIGH_BITS ( ~((uint)(~0) >> ONE_EIGHTH ))
#ifndef _pjw_inline
#define _pjw_inline static inline
#endif
/**
* unsigned int pjwhash - PJW hash function
* @key: the key address.
* @length: the length of key.
*
* This hash was created by Peter Jay Weinberger (AT&T Bell Labs):
* https://en.wikipedia.org/wiki/PJW_hash_function
*
* Return: the PJW hash.
*/
_pjw_inline uint pjwhash(const void* key, uint length)
{
uint hash = 0, high;
const u8 *k = key;
for (uint i = 0; i < length; ++k, ++i) {
hash = (hash << ONE_EIGHTH) + *k;
high = hash & HIGH_BITS;
if (high != 0) {
hash ^= high >> THREE_QUARTERS;
hash &= ~high;
}
}
return hash;
}
#endif /* _PJWHASH_INLINE_H */

30
include/pjwhash.h Normal file
View File

@@ -0,0 +1,30 @@
/* pjwhash.h - PJW hash function, extern version.
*
* Copyright (C) 2021-2022 Bruno Raoult ("br")
* Licensed under the GNU General Public License v3.0 or later.
* Some rights reserved. See COPYING.
*
* You should have received a copy of the GNU General Public License along with this
* program. If not, see <https://www.gnu.org/licenses/gpl-3.0-standalone.html>.
*
* SPDX-License-Identifier: GPL-3.0-or-later <https://spdx.org/licenses/GPL-3.0-or-later.html>
*/
#ifndef _PJWHASH_H
#define _PJWHASH_H
#include "bits.h"
/**
* unsigned int pjwhash - PJW hash function
* @key: the key address.
* @length: the length of key.
*
* This hash was created by Peter Jay Weinberger (AT&T Bell Labs):
* https://en.wikipedia.org/wiki/PJW_hash_function
*
* Return: the PJW hash.
*/
extern uint pjwhash (const void* key, uint length);
#endif /* _PJWHASH_H */

345
include/plist.h Normal file
View File

@@ -0,0 +1,345 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/* adaptation of kernel's <linux/plist.h>
*
*/
/*
* Descending-priority-sorted double-linked list
*
* (C) 2002-2003 Intel Corp
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>.
*
* 2001-2005 (c) MontaVista Software, Inc.
* Daniel Walker <dwalker@mvista.com>
*
* (C) 2005 Thomas Gleixner <tglx@linutronix.de>
*
* Simplifications of the original code by
* Oleg Nesterov <oleg@tv-sign.ru>
*
* Based on simple lists (include/linux/list.h).
*
* This is a priority-sorted list of nodes; each node has a
* priority from INT_MIN (highest) to INT_MAX (lowest).
*
* Addition is O(K), removal is O(1), change of priority of a node is
* O(K) and K is the number of RT priority levels used in the system.
* (1 <= K <= 99)
*
* This list is really a list of lists:
*
* - The tier 1 list is the prio_list, different priority nodes.
*
* - The tier 2 list is the node_list, serialized nodes.
*
* Simple ASCII art explanation:
*
* pl:prio_list (only for plist_node)
* nl:node_list
* HEAD| NODE(S)
* |
* ||------------------------------------|
* ||->|pl|<->|pl|<--------------->|pl|<-|
* | |10| |21| |21| |21| |40| (prio)
* | | | | | | | | | | |
* | | | | | | | | | | |
* |->|nl|<->|nl|<->|nl|<->|nl|<->|nl|<->|nl|<-|
* |-------------------------------------------|
*
* The nodes on the prio_list list are sorted by priority to simplify
* the insertion of new nodes. There are no nodes with duplicate
* priorites on the list.
*
* The nodes on the node_list are ordered by priority and can contain
* entries which have the same priority. Those entries are ordered
* FIFO
*
* Addition means: look for the prio_list node in the prio_list
* for the priority of the node and insert it before the node_list
* entry of the next prio_list node. If it is the first node of
* that priority, add it to the prio_list in the right position and
* insert it into the serialized node_list list
*
* Removal means remove it from the node_list and remove it from
* the prio_list if the node_list list_head is non empty. In case
* of removal from the prio_list it must be checked whether other
* entries of the same priority are on the list or not. If there
* is another entry of the same priority then this entry has to
* replace the removed entry on the prio_list. If the entry which
* is removed is the only entry of this priority then a simple
* remove from both list is sufficient.
*
* INT_MIN is the highest priority, 0 is the medium highest, INT_MAX
* is lowest priority.
*
* No locking is done, up to the caller.
*/
#ifndef _LINUX_PLIST_H_
#define _LINUX_PLIST_H_
#include "container-of.h"
#include "list.h"
//#include <types.h>
// #include <asm/bug.h>
struct plist_head {
struct list_head node_list;
};
struct plist_node {
int prio;
struct list_head prio_list;
struct list_head node_list;
};
/**
* PLIST_HEAD_INIT - static struct plist_head initializer
* @head: struct plist_head variable name
*/
#define PLIST_HEAD_INIT(head) \
{ \
.node_list = LIST_HEAD_INIT((head).node_list) \
}
/**
* PLIST_HEAD - declare and init plist_head
* @head: name for struct plist_head variable
*/
#define PLIST_HEAD(head) \
struct plist_head head = PLIST_HEAD_INIT(head)
/**
* PLIST_NODE_INIT - static struct plist_node initializer
* @node: struct plist_node variable name
* @__prio: initial node priority
*/
#define PLIST_NODE_INIT(node, __prio) \
{ \
.prio = (__prio), \
.prio_list = LIST_HEAD_INIT((node).prio_list), \
.node_list = LIST_HEAD_INIT((node).node_list), \
}
/**
* plist_head_init - dynamic struct plist_head initializer
* @head: &struct plist_head pointer
*/
static inline void
plist_head_init(struct plist_head *head)
{
INIT_LIST_HEAD(&head->node_list);
}
/**
* plist_node_init - Dynamic struct plist_node initializer
* @node: &struct plist_node pointer
* @prio: initial node priority
*/
static inline void plist_node_init(struct plist_node *node, int prio)
{
node->prio = prio;
INIT_LIST_HEAD(&node->prio_list);
INIT_LIST_HEAD(&node->node_list);
}
extern void plist_add(struct plist_node *node, struct plist_head *head);
extern void plist_del(struct plist_node *node, struct plist_head *head);
extern void plist_requeue(struct plist_node *node, struct plist_head *head);
/**
* plist_for_each - iterate over the plist
* @pos: the type * to use as a loop counter
* @head: the head for your list
*/
#define plist_for_each(pos, head) \
list_for_each_entry(pos, &(head)->node_list, node_list)
/**
* plist_for_each_reverse - iterate backwards over the plist
* @pos: the type * to use as a loop counter
* @head: the head for your list
*/
#define plist_for_each_reverse(pos, head) \
list_for_each_entry_reverse(pos, &(head)->node_list, node_list)
/**
* plist_for_each_continue - continue iteration over the plist
* @pos: the type * to use as a loop cursor
* @head: the head for your list
*
* Continue to iterate over plist, continuing after the current position.
*/
#define plist_for_each_continue(pos, head) \
list_for_each_entry_continue(pos, &(head)->node_list, node_list)
/**
* plist_for_each_continue_reverse - continue iteration over the plist
* @pos: the type * to use as a loop cursor
* @head: the head for your list
*
* Continue to iterate backwards over plist, continuing after the current
* position.
*/
#define plist_for_each_continue_reverse(pos, head) \
list_for_each_entry_continue_reverse(pos, &(head)->node_list, node_list)
/**
* plist_for_each_safe - iterate safely over a plist of given type
* @pos: the type * to use as a loop counter
* @n: another type * to use as temporary storage
* @head: the head for your list
*
* Iterate over a plist of given type, safe against removal of list entry.
*/
#define plist_for_each_safe(pos, n, head) \
list_for_each_entry_safe(pos, n, &(head)->node_list, node_list)
/**
* plist_for_each_safe_reverse - iterate backwards safely over a plist of given type
* @pos: the type * to use as a loop counter
* @n: another type * to use as temporary storage
* @head: the head for your list
*
* Iterate backwards over a plist of given type, safe against removal of list entry.
*/
#define plist_for_each_safe_reverse(pos, n, head) \
list_for_each_entry_safe_reverse(pos, n, &(head)->node_list, node_list)
/**
* plist_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop counter
* @head: the head for your list
* @mem: the name of the list_head within the struct
*/
#define plist_for_each_entry(pos, head, mem) \
list_for_each_entry(pos, &(head)->node_list, mem.node_list)
/**
* plist_for_each_entry_reverse - iterate backwards over list of given type
* @pos: the type * to use as a loop counter
* @head: the head for your list
* @mem: the name of the list_head within the struct
*/
#define plist_for_each_entry_reverse(pos, head, mem) \
list_for_each_entry_reverse(pos, &(head)->node_list, mem.node_list)
/**
* plist_for_each_entry_continue - continue iteration over list of given type
* @pos: the type * to use as a loop cursor
* @head: the head for your list
* @m: the name of the list_head within the struct
*
* Continue to iterate over list of given type, continuing after
* the current position.
*/
#define plist_for_each_entry_continue(pos, head, m) \
list_for_each_entry_continue(pos, &(head)->node_list, m.node_list)
/**
* plist_for_each_entry_safe - iterate safely over list of given type
* @pos: the type * to use as a loop counter
* @n: another type * to use as temporary storage
* @head: the head for your list
* @m: the name of the list_head within the struct
*
* Iterate over list of given type, safe against removal of list entry.
*/
#define plist_for_each_entry_safe(pos, n, head, m) \
list_for_each_entry_safe(pos, n, &(head)->node_list, m.node_list)
/**
* plist_head_empty - return !0 if a plist_head is empty
* @head: &struct plist_head pointer
*/
static inline int plist_head_empty(const struct plist_head *head)
{
return list_empty(&head->node_list);
}
/**
* plist_node_empty - return !0 if plist_node is not on a list
* @node: &struct plist_node pointer
*/
static inline int plist_node_empty(const struct plist_node *node)
{
return list_empty(&node->node_list);
}
/* All functions below assume the plist_head is not empty. */
/**
* plist_first_entry - get the struct for the first entry
* @head: the &struct plist_head pointer
* @type: the type of the struct this is embedded in
* @member: the name of the list_head within the struct
*/
#ifdef CONFIG_DEBUG_PLIST
# define plist_first_entry(head, type, member) \
({ \
WARN_ON(plist_head_empty(head)); \
container_of(plist_first(head), type, member); \
})
#else
# define plist_first_entry(head, type, member) \
container_of(plist_first(head), type, member)
#endif
/**
* plist_last_entry - get the struct for the last entry
* @head: the &struct plist_head pointer
* @type: the type of the struct this is embedded in
* @member: the name of the list_head within the struct
*/
#ifdef CONFIG_DEBUG_PLIST
# define plist_last_entry(head, type, member) \
({ \
WARN_ON(plist_head_empty(head)); \
container_of(plist_last(head), type, member); \
})
#else
# define plist_last_entry(head, type, member) \
container_of(plist_last(head), type, member)
#endif
/**
* plist_next - get the next entry in list
* @pos: the type * to cursor
*/
#define plist_next(pos) \
list_next_entry(pos, node_list)
/**
* plist_prev - get the prev entry in list
* @pos: the type * to cursor
*/
#define plist_prev(pos) \
list_prev_entry(pos, node_list)
/**
* plist_first - return the first node (and thus, highest priority)
* @head: the &struct plist_head pointer
*
* Assumes the plist is _not_ empty.
*/
static inline struct plist_node *plist_first(const struct plist_head *head)
{
return list_entry(head->node_list.next,
struct plist_node, node_list);
}
/**
* plist_last - return the last node (and thus, lowest priority)
* @head: the &struct plist_head pointer
*
* Assumes the plist is _not_ empty.
*/
static inline struct plist_node *plist_last(const struct plist_head *head)
{
return list_entry(head->node_list.prev,
struct plist_node, node_list);
}
#endif

90
include/pool.h Normal file
View File

@@ -0,0 +1,90 @@
/* pool.h - A simple memory pool manager.
*
* Copyright (C) 2021-2022 Bruno Raoult ("br")
* Licensed under the GNU General Public License v3.0 or later.
* Some rights reserved. See COPYING.
*
* You should have received a copy of the GNU General Public License along with this
* program. If not, see <https://www.gnu.org/licenses/gpl-3.0-standalone.html>.
*
* SPDX-License-Identifier: GPL-3.0-or-later <https://spdx.org/licenses/GPL-3.0-or-later.html>
*
*/
#ifndef POOL_H
#define POOL_H
#include <stdint.h>
#include <stddef.h>
#include "list.h"
#include "bits.h"
#define POOL_NAME_LENGTH (16) /* max name length including trailing \0 */
typedef struct {
struct list_head list_blocks; /* list of allocated blocks in pool */
char data[]; /* objects block */
} block_t;
typedef struct {
char name[POOL_NAME_LENGTH]; /* pool name */
size_t eltsize; /* object size */
u32 available; /* current available elements */
u32 allocated; /* total objects allocated */
u32 growsize; /* number of objects per block allocated */
u32 nblocks; /* number of blocks allocated */
struct list_head list_available; /* available nodes */
struct list_head list_blocks; /* allocated blocks */
} pool_t;
/**
* pool_stats - display some pool statistics
* @pool: the pool address.
*/
void pool_stats(pool_t *pool);
/**
* pool_create - create a new memory pool
* @name: the name to give to the pool.
* @grow: the number of elements to add when no more available.
* @size: the size of an element in pool.
*
* The name will be truncated to 16 characters (including the final '\0').
*
* Return: The address of the created pool, or NULL if error.
*/
pool_t *pool_create(const char *name, u32 grow, size_t size);
/**
* pool_get() - Get an element from a pool.
* @pool: The pool address.
*
* Get an object from the pool.
*
* Return: The address of the object, or NULL if error.
*/
void *pool_get(pool_t *pool);
/**
* pool_add() - Add (free) an element to a pool.
* @pool: The pool address.
* @elt: The address of the object to add to the pool.
*
* The object will be available for further pool_get().
*
* Return: The current number of available elements in pool (including
* @elt).
*/
u32 pool_add(pool_t *pool, void *elt);
/**
* pool_destroy() - destroy a pool.
* @pool: The pool address.
*
* Attention: All memory is freed, but no check is done whether all pool
* elements have been released. Referencing any pool object after this call
* will likely imply some memory corruption.
*/
void pool_destroy(pool_t *pool);
#endif

128
include/rwonce.h Normal file
View File

@@ -0,0 +1,128 @@
/* SPDX-License-Identifier: GPL-2.0 */
/* adaptation of kernel's <asm-generic/rwonce.h>
* See https://www.kernel.org/doc/Documentation/memory-barriers.txt
*/
/*
* Prevent the compiler from merging or refetching reads or writes. The
* compiler is also forbidden from reordering successive instances of
* READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
* particular ordering. One way to make the compiler aware of ordering is to
* put the two invocations of READ_ONCE or WRITE_ONCE in different C
* statements.
*
* These two macros will also work on aggregate data types like structs or
* unions.
*
* Their two major use cases are: (1) Mediating communication between
* process-level code and irq/NMI handlers, all running on the same CPU,
* and (2) Ensuring that the compiler does not fold, spindle, or otherwise
* mutilate accesses that either do not require ordering or that interact
* with an explicit memory barrier or atomic instruction that provides the
* required ordering.
*/
#ifndef __BR_RWONCE_H
#define __BR_RWONCE_H
/************ originally in <include/linux/compiler_attributes.h> */
#if __has_attribute(__error__)
# define __compiletime_error(msg) __attribute__((__error__(msg)))
#else
# define __compiletime_error(msg)
#endif
/************ originally in <include/linux/compiler_types.h> */
/*
* __unqual_scalar_typeof(x) - Declare an unqualified scalar type, leaving
* non-scalar types unchanged.
*/
/*
* Prefer C11 _Generic for better compile-times and simpler code. Note: 'char'
* is not type-compatible with 'signed char', and we define a separate case.
*/
#define __scalar_type_to_expr_cases(type) \
unsigned type: (unsigned type)0, \
signed type: (signed type)0
#define __unqual_scalar_typeof(x) \
typeof(_Generic((x), \
char: (char)0, \
__scalar_type_to_expr_cases(char), \
__scalar_type_to_expr_cases(short), \
__scalar_type_to_expr_cases(int), \
__scalar_type_to_expr_cases(long), \
__scalar_type_to_expr_cases(long long), \
default: (x)))
/* Is this type a native word size -- useful for atomic operations */
#define __native_word(t) \
(sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || \
sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long))
#ifdef __OPTIMIZE__
# define __compiletime_assert(condition, msg, prefix, suffix) \
do { \
extern void prefix ## suffix(void) __compiletime_error(msg); \
if (!(condition)) \
prefix ## suffix(); \
} while (0)
#else
# define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
#endif
#define _compiletime_assert(condition, msg, prefix, suffix) \
__compiletime_assert(condition, msg, prefix, suffix)
/**
* compiletime_assert - break build and emit msg if condition is false
* @condition: a compile-time constant condition to check
* @msg: a message to emit if condition is false
*
* In tradition of POSIX assert, this macro will break the build if the
* supplied condition is *false*, emitting the supplied error message if the
* compiler has support to do so.
*/
#define compiletime_assert(condition, msg) \
_compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
#define compiletime_assert_atomic_type(t) \
compiletime_assert(__native_word(t), \
"Need native word sized stores/loads for atomicity.")
/************ originally in <asm-generic/rwonce.h> */
/*
* Yes, this permits 64-bit accesses on 32-bit architectures. These will
* actually be atomic in some cases (namely Armv7 + LPAE), but for others we
* rely on the access being split into 2x32-bit accesses for a 32-bit quantity
* (e.g. a virtual address) and a strong prevailing wind.
*/
#define compiletime_assert_rwonce_type(t) \
compiletime_assert(__native_word(t) || sizeof(t) == sizeof(long long), \
"Unsupported access size for {READ,WRITE}_ONCE().")
/*
* Use __READ_ONCE() instead of READ_ONCE() if you do not require any
* atomicity. Note that this may result in tears!
*/
#ifndef __READ_ONCE
#define __READ_ONCE(x) (*(const volatile __unqual_scalar_typeof(x) *)&(x))
#endif
#define READ_ONCE(x) \
({ \
compiletime_assert_rwonce_type(x); \
__READ_ONCE(x); \
})
#define __WRITE_ONCE(x, val) \
do { \
*(volatile typeof(x) *)&(x) = (val); \
} while (0)
#define WRITE_ONCE(x, val) \
do { \
compiletime_assert_rwonce_type(x); \
__WRITE_ONCE(x, val); \
} while (0)
#endif /* __BR_RWONCE_H */

79
include/stringhash.h Normal file
View File

@@ -0,0 +1,79 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_STRINGHASH_H
#define __LINUX_STRINGHASH_H
#include <linux/compiler.h> /* For __pure */
#include <linux/types.h> /* For u32, u64 */
#include <linux/hash.h>
/*
* Routines for hashing strings of bytes to a 32-bit hash value.
*
* These hash functions are NOT GUARANTEED STABLE between kernel
* versions, architectures, or even repeated boots of the same kernel.
* (E.g. they may depend on boot-time hardware detection or be
* deliberately randomized.)
*
* They are also not intended to be secure against collisions caused by
* malicious inputs; much slower hash functions are required for that.
*
* They are optimized for pathname components, meaning short strings.
* Even if a majority of files have longer names, the dynamic profile of
* pathname components skews short due to short directory names.
* (E.g. /usr/lib/libsesquipedalianism.so.3.141.)
*/
/*
* Version 1: one byte at a time. Example of use:
*
* unsigned long hash = init_name_hash;
* while (*p)
* hash = partial_name_hash(tolower(*p++), hash);
* hash = end_name_hash(hash);
*
* Although this is designed for bytes, fs/hfsplus/unicode.c
* abuses it to hash 16-bit values.
*/
/* Hash courtesy of the R5 hash in reiserfs modulo sign bits */
#define init_name_hash(salt) (unsigned long)(salt)
/* partial hash update function. Assume roughly 4 bits per character */
static inline unsigned long
partial_name_hash(unsigned long c, unsigned long prevhash)
{
return (prevhash + (c << 4) + (c >> 4)) * 11;
}
/*
* Finally: cut down the number of bits to a int value (and try to avoid
* losing bits). This also has the property (wanted by the dcache)
* that the msbits make a good hash table index.
*/
static inline unsigned int end_name_hash(unsigned long hash)
{
return hash_long(hash, 32);
}
/*
* Version 2: One word (32 or 64 bits) at a time.
* If CONFIG_DCACHE_WORD_ACCESS is defined (meaning <asm/word-at-a-time.h>
* exists, which describes major Linux platforms like x86 and ARM), then
* this computes a different hash function much faster.
*
* If not set, this falls back to a wrapper around the preceding.
*/
extern unsigned int __pure full_name_hash(const void *salt, const char *, unsigned int);
/*
* A hash_len is a u64 with the hash of a string in the low
* half and the length in the high half.
*/
#define hashlen_hash(hashlen) ((u32)(hashlen))
#define hashlen_len(hashlen) ((u32)((hashlen) >> 32))
#define hashlen_create(hash, len) ((u64)(len)<<32 | (u32)(hash))
/* Return the "hash_len" (hash and length) of a null-terminated string */
extern u64 __pure hashlen_string(const void *salt, const char *name);
#endif /* __LINUX_STRINGHASH_H */

105
include/struct-group.h Normal file
View File

@@ -0,0 +1,105 @@
/* struct-group.h - mirrored structure macros.
*
* Copyright (C) 2021-2022 Bruno Raoult ("br")
* Licensed under the GNU General Public License v3.0 or later.
* Some rights reserved. See COPYING.
*
* You should have received a copy of the GNU General Public License along with this
* program. If not, see <https://www.gnu.org/licenses/gpl-3.0-standalone.html>.
*
* SPDX-License-Identifier: GPL-3.0-or-later <https://spdx.org/licenses/GPL-3.0-or-later.html>
*
* Some parts are taken from Linux's kernel <linux/stddef.h> and others, and are :
* SPDX-License-Identifier: GPL-2.0
*
*/
#ifndef _STRUCT_GROUP_H
#define _STRUCT_GROUP_H
/**
* __struct_group() - Create a mirrored named and anonyomous struct
*
* @TAG: The tag name for the named sub-struct (usually empty)
* @NAME: The identifier name of the mirrored sub-struct
* @ATTRS: Any struct attributes (usually empty)
* @MEMBERS: The member declarations for the mirrored structs
*
* Used to create an anonymous union of two structs with identical layout
* and size: one anonymous and one named. The former's members can be used
* normally without sub-struct naming, and the latter can be used to
* reason about the start, end, and size of the group of struct members.
* The named struct can also be explicitly tagged for layer reuse, as well
* as both having struct attributes appended.
*/
#define __struct_group(TAG, NAME, ATTRS, MEMBERS...) \
union { \
struct { MEMBERS } ATTRS; \
struct TAG { MEMBERS } ATTRS NAME; \
}
/**
* DECLARE_FLEX_ARRAY() - Declare a flexible array usable in a union
*
* @TYPE: The type of each flexible array element
* @NAME: The name of the flexible array member
*
* In order to have a flexible array member in a union or alone in a
* struct, it needs to be wrapped in an anonymous struct with at least 1
* named member, but that member can be empty.
*/
#define DECLARE_FLEX_ARRAY(TYPE, NAME) \
struct { \
struct { } __empty_ ## NAME; \
TYPE NAME[]; \
}
/**
* struct_group() - Wrap a set of declarations in a mirrored struct
*
* @NAME: The identifier name of the mirrored sub-struct
* @MEMBERS: The member declarations for the mirrored structs
*
* Used to create an anonymous union of two structs with identical
* layout and size: one anonymous and one named. The former can be
* used normally without sub-struct naming, and the latter can be
* used to reason about the start, end, and size of the group of
* struct members.
*/
#define struct_group(NAME, MEMBERS...) \
__struct_group(/* no tag */, NAME, /* no attrs */, MEMBERS)
/**
* struct_group_attr() - Create a struct_group() with trailing attributes
*
* @NAME: The identifier name of the mirrored sub-struct
* @ATTRS: Any struct attributes to apply
* @MEMBERS: The member declarations for the mirrored structs
*
* Used to create an anonymous union of two structs with identical
* layout and size: one anonymous and one named. The former can be
* used normally without sub-struct naming, and the latter can be
* used to reason about the start, end, and size of the group of
* struct members. Includes structure attributes argument.
*/
#define struct_group_attr(NAME, ATTRS, MEMBERS...) \
__struct_group(/* no tag */, NAME, ATTRS, MEMBERS)
/**
* struct_group_tagged() - Create a struct_group with a reusable tag
*
* @TAG: The tag name for the named sub-struct
* @NAME: The identifier name of the mirrored sub-struct
* @MEMBERS: The member declarations for the mirrored structs
*
* Used to create an anonymous union of two structs with identical
* layout and size: one anonymous and one named. The former can be
* used normally without sub-struct naming, and the latter can be
* used to reason about the start, end, and size of the group of
* struct members. Includes struct tag argument for the named copy,
* so the specified layout can be reused later.
*/
#define struct_group_tagged(TAG, NAME, MEMBERS...) \
__struct_group(TAG, NAME, /* no attrs */, MEMBERS)
#endif /* _STRUCT_GROUP_H */