remove unused lib includes

This commit is contained in:
2023-07-07 12:28:22 +02:00
parent 12f972e152
commit 531bfa4fb0
3 changed files with 0 additions and 382 deletions

View File

@@ -1,44 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* See Documentation/core-api/circular-buffers.rst for more information.
*/
#ifndef _LINUX_CIRC_BUF_H
#define _LINUX_CIRC_BUF_H 1
#define CIRC_BUF(name, type, bits) \
struct s##name { \
type buf[1 << (bits)]; \
int head; \
int tail; \
};
struct circ_buf {
char *buf;
int head;
int tail;
};
/* Return count in buffer. */
#define CIRC_CNT(head,tail,size) (((head) - (tail)) & ((size)-1))
/* Return space available, 0..size-1. We always leave one free char
as a completely full buffer has head == tail, which is the same as
empty. */
#define CIRC_SPACE(head,tail,size) CIRC_CNT((tail),((head)+1),(size))
/* Return count up to the end of the buffer. Carefully avoid
accessing head and tail more than once, so they can change
underneath us without returning inconsistent results. */
#define CIRC_CNT_TO_END(head,tail,size) \
({int end = (size) - (tail); \
int n = ((head) + end) & ((size)-1); \
n < end ? n : end;})
/* Return space available up to the end of the buffer. */
#define CIRC_SPACE_TO_END(head,tail,size) \
({int end = (size) - 1 - (head); \
int n = (end + (tail)) & ((size)-1); \
n <= end ? n : end+1;})
#endif /* _LINUX_CIRC_BUF_H */

View File

@@ -1,79 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_STRINGHASH_H
#define __LINUX_STRINGHASH_H
#include <linux/compiler.h> /* For __pure */
#include <linux/types.h> /* For u32, u64 */
#include <linux/hash.h>
/*
* Routines for hashing strings of bytes to a 32-bit hash value.
*
* These hash functions are NOT GUARANTEED STABLE between kernel
* versions, architectures, or even repeated boots of the same kernel.
* (E.g. they may depend on boot-time hardware detection or be
* deliberately randomized.)
*
* They are also not intended to be secure against collisions caused by
* malicious inputs; much slower hash functions are required for that.
*
* They are optimized for pathname components, meaning short strings.
* Even if a majority of files have longer names, the dynamic profile of
* pathname components skews short due to short directory names.
* (E.g. /usr/lib/libsesquipedalianism.so.3.141.)
*/
/*
* Version 1: one byte at a time. Example of use:
*
* unsigned long hash = init_name_hash;
* while (*p)
* hash = partial_name_hash(tolower(*p++), hash);
* hash = end_name_hash(hash);
*
* Although this is designed for bytes, fs/hfsplus/unicode.c
* abuses it to hash 16-bit values.
*/
/* Hash courtesy of the R5 hash in reiserfs modulo sign bits */
#define init_name_hash(salt) (unsigned long)(salt)
/* partial hash update function. Assume roughly 4 bits per character */
static inline unsigned long
partial_name_hash(unsigned long c, unsigned long prevhash)
{
return (prevhash + (c << 4) + (c >> 4)) * 11;
}
/*
* Finally: cut down the number of bits to a int value (and try to avoid
* losing bits). This also has the property (wanted by the dcache)
* that the msbits make a good hash table index.
*/
static inline unsigned int end_name_hash(unsigned long hash)
{
return hash_long(hash, 32);
}
/*
* Version 2: One word (32 or 64 bits) at a time.
* If CONFIG_DCACHE_WORD_ACCESS is defined (meaning <asm/word-at-a-time.h>
* exists, which describes major Linux platforms like x86 and ARM), then
* this computes a different hash function much faster.
*
* If not set, this falls back to a wrapper around the preceding.
*/
extern unsigned int __pure full_name_hash(const void *salt, const char *, unsigned int);
/*
* A hash_len is a u64 with the hash of a string in the low
* half and the length in the high half.
*/
#define hashlen_hash(hashlen) ((u32)(hashlen))
#define hashlen_len(hashlen) ((u32)((hashlen) >> 32))
#define hashlen_create(hash, len) ((u64)(len)<<32 | (u32)(hash))
/* Return the "hash_len" (hash and length) of a null-terminated string */
extern u64 __pure hashlen_string(const void *salt, const char *name);
#endif /* __LINUX_STRINGHASH_H */

View File

@@ -1,259 +0,0 @@
/*
* xxHash - Extremely Fast Hash algorithm
* Copyright (C) 2012-2016, Yann Collet.
*
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License version 2 as published by the
* Free Software Foundation. This program is dual-licensed; you may select
* either version 2 of the GNU General Public License ("GPL") or BSD license
* ("BSD").
*
* You can contact the author at:
* - xxHash homepage: https://cyan4973.github.io/xxHash/
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/
/*
* Notice extracted from xxHash homepage:
*
* xxHash is an extremely fast Hash algorithm, running at RAM speed limits.
* It also successfully passes all tests from the SMHasher suite.
*
* Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2
* Duo @3GHz)
*
* Name Speed Q.Score Author
* xxHash 5.4 GB/s 10
* CrapWow 3.2 GB/s 2 Andrew
* MumurHash 3a 2.7 GB/s 10 Austin Appleby
* SpookyHash 2.0 GB/s 10 Bob Jenkins
* SBox 1.4 GB/s 9 Bret Mulvey
* Lookup3 1.2 GB/s 9 Bob Jenkins
* SuperFastHash 1.2 GB/s 1 Paul Hsieh
* CityHash64 1.05 GB/s 10 Pike & Alakuijala
* FNV 0.55 GB/s 5 Fowler, Noll, Vo
* CRC32 0.43 GB/s 9
* MD5-32 0.33 GB/s 10 Ronald L. Rivest
* SHA1-32 0.28 GB/s 10
*
* Q.Score is a measure of quality of the hash function.
* It depends on successfully passing SMHasher test set.
* 10 is a perfect score.
*
* A 64-bits version, named xxh64 offers much better speed,
* but for 64-bits applications only.
* Name Speed on 64 bits Speed on 32 bits
* xxh64 13.8 GB/s 1.9 GB/s
* xxh32 6.8 GB/s 6.0 GB/s
*/
#ifndef XXHASH_H
#define XXHASH_H
#include <linux/types.h>
/*-****************************
* Simple Hash Functions
*****************************/
/**
* xxh32() - calculate the 32-bit hash of the input with a given seed.
*
* @input: The data to hash.
* @length: The length of the data to hash.
* @seed: The seed can be used to alter the result predictably.
*
* Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s
*
* Return: The 32-bit hash of the data.
*/
uint32_t xxh32(const void *input, size_t length, uint32_t seed);
/**
* xxh64() - calculate the 64-bit hash of the input with a given seed.
*
* @input: The data to hash.
* @length: The length of the data to hash.
* @seed: The seed can be used to alter the result predictably.
*
* This function runs 2x faster on 64-bit systems, but slower on 32-bit systems.
*
* Return: The 64-bit hash of the data.
*/
uint64_t xxh64(const void *input, size_t length, uint64_t seed);
/**
* xxhash() - calculate wordsize hash of the input with a given seed
* @input: The data to hash.
* @length: The length of the data to hash.
* @seed: The seed can be used to alter the result predictably.
*
* If the hash does not need to be comparable between machines with
* different word sizes, this function will call whichever of xxh32()
* or xxh64() is faster.
*
* Return: wordsize hash of the data.
*/
static inline unsigned long xxhash(const void *input, size_t length,
uint64_t seed)
{
#if BITS_PER_LONG == 64
return xxh64(input, length, seed);
#else
return xxh32(input, length, seed);
#endif
}
/*-****************************
* Streaming Hash Functions
*****************************/
/*
* These definitions are only meant to allow allocation of XXH state
* statically, on stack, or in a struct for example.
* Do not use members directly.
*/
/**
* struct xxh32_state - private xxh32 state, do not use members directly
*/
struct xxh32_state {
uint32_t total_len_32;
uint32_t large_len;
uint32_t v1;
uint32_t v2;
uint32_t v3;
uint32_t v4;
uint32_t mem32[4];
uint32_t memsize;
};
/**
* struct xxh32_state - private xxh64 state, do not use members directly
*/
struct xxh64_state {
uint64_t total_len;
uint64_t v1;
uint64_t v2;
uint64_t v3;
uint64_t v4;
uint64_t mem64[4];
uint32_t memsize;
};
/**
* xxh32_reset() - reset the xxh32 state to start a new hashing operation
*
* @state: The xxh32 state to reset.
* @seed: Initialize the hash state with this seed.
*
* Call this function on any xxh32_state to prepare for a new hashing operation.
*/
void xxh32_reset(struct xxh32_state *state, uint32_t seed);
/**
* xxh32_update() - hash the data given and update the xxh32 state
*
* @state: The xxh32 state to update.
* @input: The data to hash.
* @length: The length of the data to hash.
*
* After calling xxh32_reset() call xxh32_update() as many times as necessary.
*
* Return: Zero on success, otherwise an error code.
*/
int xxh32_update(struct xxh32_state *state, const void *input, size_t length);
/**
* xxh32_digest() - produce the current xxh32 hash
*
* @state: Produce the current xxh32 hash of this state.
*
* A hash value can be produced at any time. It is still possible to continue
* inserting input into the hash state after a call to xxh32_digest(), and
* generate new hashes later on, by calling xxh32_digest() again.
*
* Return: The xxh32 hash stored in the state.
*/
uint32_t xxh32_digest(const struct xxh32_state *state);
/**
* xxh64_reset() - reset the xxh64 state to start a new hashing operation
*
* @state: The xxh64 state to reset.
* @seed: Initialize the hash state with this seed.
*/
void xxh64_reset(struct xxh64_state *state, uint64_t seed);
/**
* xxh64_update() - hash the data given and update the xxh64 state
* @state: The xxh64 state to update.
* @input: The data to hash.
* @length: The length of the data to hash.
*
* After calling xxh64_reset() call xxh64_update() as many times as necessary.
*
* Return: Zero on success, otherwise an error code.
*/
int xxh64_update(struct xxh64_state *state, const void *input, size_t length);
/**
* xxh64_digest() - produce the current xxh64 hash
*
* @state: Produce the current xxh64 hash of this state.
*
* A hash value can be produced at any time. It is still possible to continue
* inserting input into the hash state after a call to xxh64_digest(), and
* generate new hashes later on, by calling xxh64_digest() again.
*
* Return: The xxh64 hash stored in the state.
*/
uint64_t xxh64_digest(const struct xxh64_state *state);
/*-**************************
* Utils
***************************/
/**
* xxh32_copy_state() - copy the source state into the destination state
*
* @src: The source xxh32 state.
* @dst: The destination xxh32 state.
*/
void xxh32_copy_state(struct xxh32_state *dst, const struct xxh32_state *src);
/**
* xxh64_copy_state() - copy the source state into the destination state
*
* @src: The source xxh64 state.
* @dst: The destination xxh64 state.
*/
void xxh64_copy_state(struct xxh64_state *dst, const struct xxh64_state *src);
#endif /* XXHASH_H */