97 lines
1.8 KiB
C
97 lines
1.8 KiB
C
#include "complex_numbers.h"
|
|
|
|
#ifdef USE_COMPLEX_FUNCTIONS
|
|
|
|
complex_t c_add(complex_t a, complex_t b)
|
|
{
|
|
return (complex_t) {
|
|
.real = a.real+b.real,
|
|
.imag = a.imag+b.imag
|
|
};
|
|
}
|
|
|
|
complex_t c_sub(complex_t a, complex_t b)
|
|
{
|
|
return (complex_t) {
|
|
.real = a.real-b.real,
|
|
.imag = a.imag-b.imag
|
|
};
|
|
}
|
|
|
|
complex_t c_mul(complex_t a, complex_t b)
|
|
{
|
|
return (complex_t) {
|
|
.real = a.real*b.real - a.imag*b.imag,
|
|
.imag = a.imag*b.real + a.real*b.imag,
|
|
};
|
|
}
|
|
|
|
complex_t c_div(complex_t a, complex_t b)
|
|
{
|
|
double d = b.real*b.real + b.imag*b.imag;
|
|
return (complex_t) {
|
|
.real = (a.real*b.real + a.imag*b.imag)/d,
|
|
.imag = (a.imag*b.real - a.real*b.imag)/d
|
|
};
|
|
}
|
|
|
|
double c_abs(complex_t x)
|
|
{
|
|
return sqrt(x.real*x.real + x.imag*x.imag);
|
|
}
|
|
|
|
complex_t c_conjugate(complex_t x)
|
|
{
|
|
return (complex_t) {
|
|
.real = x.real,
|
|
.imag = -x.imag
|
|
};
|
|
}
|
|
|
|
double c_real(complex_t x)
|
|
{
|
|
return x.real;
|
|
}
|
|
|
|
double c_imag(complex_t x)
|
|
{
|
|
return x.imag;
|
|
}
|
|
|
|
complex_t c_exp(complex_t x)
|
|
{
|
|
return (complex_t) {
|
|
.real = exp(x.real)*cos(x.imag),
|
|
.imag = exp(x.real)*sin(x.imag)
|
|
};
|
|
}
|
|
|
|
#endif
|
|
|
|
/* See GNUmakefile below for explanation
|
|
* https://github.com/braoult/exercism/blob/master/c/templates/GNUmakefile
|
|
*/
|
|
#ifdef UNIT_TEST
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
int main(int ac, char **av)
|
|
{
|
|
int arg=1;
|
|
complex_t c1, c2, c3;
|
|
|
|
for (; arg<ac-3; ++arg, ++arg) {
|
|
c1.real=atof(av[arg]);
|
|
c1.imag=atof(av[arg+1]);
|
|
|
|
c2.real=atof(av[arg+2]);
|
|
c2.imag=atof(av[arg+3]);
|
|
c3 = c_add(c1, c2);
|
|
printf("(%f + %fi) + (%f + %fi) = (%f + %fi)\n",
|
|
c1.real, c1.imag,
|
|
c2.real, c2.imag,
|
|
c3.real, c3.imag);
|
|
}
|
|
}
|
|
#endif
|