initial commit

This commit is contained in:
2021-08-08 21:11:22 +02:00
commit fe7136d801
130 changed files with 6858 additions and 0 deletions

View File

@@ -0,0 +1,41 @@
# The original 'makefile' has a flaw:
# 1) it overrides CFLAGS
# 2) it does not pass extra "FLAGS" to $(CC) that could come from environment
#
# It means :
# - we need to edit 'makefile' for different builds (DEBUG, etc...), which is
# not practical at all.
# - Also, it does not allow to run all tests without editing the test source
# code.
#
# To use this makefile (GNU make only):
# "make": build with all predefined tests (without editing test source code)
# "make mem": perform memcheck with all tests enabled
# "make unit": build standalone (unit) test
# "make debug": build standalone test with debugging code
#
# Original 'makefile' targets can be used (test, memcheck, clean, ...)
.PHONY: default all mem unit debug std
default: all
# default is to build with all predefined tests
BUILD := teststall
include makefile
all: CFLAGS+=-DTESTALL
all: clean test
mem: CFLAGS+=-DTESTALL
mem: clean memcheck
unit: CFLAGS+=-DUNIT_TEST
unit: clean std
debug: CFLAGS+=-DUNIT_TEST -DDEBUG
debug: clean std
std: src/*.c src/*.h
$(CC) $(CFLAGS) src/*.c -o test.out

View File

@@ -0,0 +1,72 @@
# Resistor Color Duo
If you want to build something using a Raspberry Pi, you'll probably use _resistors_.
For this exercise, you need to know two things about them:
* Each resistor has a resistance value.
* Resistors are small - so small in fact that if you printed the resistance value on them, it would be hard to read.
To get around this problem, manufacturers print color-coded bands onto the resistors to denote their resistance values.
Each band has a position and a numeric value.
The first 2 bands of a resistor have a simple encoding scheme: each color maps to a single number.
For example, if they printed a brown band (value 1) followed by a green band (value 5), it would translate to the number 15.
In this exercise you are going to create a helpful program so that you don't have to remember the values of the bands.
The program will take color names as input and output a two digit number, even if the input is more than two colors!
The band colors are encoded as follows:
- Black: 0
- Brown: 1
- Red: 2
- Orange: 3
- Yellow: 4
- Green: 5
- Blue: 6
- Violet: 7
- Grey: 8
- White: 9
From the example above:
brown-green should return 15
brown-green-violet should return 15 too, ignoring the third color.
## Getting Started
Make sure you have read the "Guides" section of the
[C track][c-track] on the Exercism site. This covers
the basic information on setting up the development environment expected
by the exercises.
## Passing the Tests
Get the first test compiling, linking and passing by following the [three
rules of test-driven development][3-tdd-rules].
The included makefile can be used to create and run the tests using the `test`
task.
make test
Create just the functions you need to satisfy any compiler errors and get the
test to fail. Then write just enough code to get the test to pass. Once you've
done that, move onto the next test.
As you progress through the tests, take the time to refactor your
implementation for readability and expressiveness and then go on to the next
test.
Try to use standard C99 facilities in preference to writing your own
low-level algorithms or facilities by hand.
## Source
Maud de Vries, Erik Schierboom [https://github.com/exercism/problem-specifications/issues/1464](https://github.com/exercism/problem-specifications/issues/1464)
## Submitting Incomplete Solutions
It's possible to submit an incomplete solution so you can see how others have completed the exercise.
[c-track]: https://exercism.io/my/tracks/c
[3-tdd-rules]: http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd

View File

@@ -0,0 +1,37 @@
### If you wish to use extra libraries (math.h for instance),
### add their flags here (-lm in our case) in the "LIBS" variable.
LIBS = -lm
###
CFLAGS = -std=c99
CFLAGS += -g
CFLAGS += -Wall
CFLAGS += -Wextra
CFLAGS += -pedantic
CFLAGS += -Werror
CFLAGS += -Wmissing-declarations
CFLAGS += -DUNITY_SUPPORT_64
ASANFLAGS = -fsanitize=address
ASANFLAGS += -fno-common
ASANFLAGS += -fno-omit-frame-pointer
.PHONY: test
test: tests.out
@./tests.out
.PHONY: memcheck
memcheck: test/*.c src/*.c src/*.h
@echo Compiling $@
@$(CC) $(ASANFLAGS) $(CFLAGS) src/*.c test/vendor/unity.c test/*.c -o memcheck.out $(LIBS)
@./memcheck.out
@echo "Memory check passed"
.PHONY: clean
clean:
rm -rf *.o *.out *.out.dSYM
tests.out: test/*.c src/*.c src/*.h
@echo Compiling $@
@$(CC) $(CFLAGS) src/*.c test/vendor/unity.c test/*.c -o tests.out $(LIBS)

View File

@@ -0,0 +1,26 @@
#include "resistor_color_duo.h"
#if defined UNIT_TEST || defined DEBUG
#include <stdio.h>
#include <stdlib.h>
#endif
resistor_band_t color_code(resistor_band_t *colors)
{
resistor_band_t c1=*colors, c2=*(colors+1);
return c1>=BLACK && c1<=WHITE && c2>=BLACK && c2<=WHITE? c1*10+c2: ERROR;
}
#ifdef UNIT_TEST
int main(int ac, char **av)
{
int arg=1;
resistor_band_t i[2];
for (; arg<ac-1; ++arg, ++arg) {
*i=atoi(av[arg]);
*(i+1)=atoi(av[arg+1]);
printf("color(%d, %d)=%d\n", i[0], i[1], color_code(i));
}
}
#endif

View File

@@ -0,0 +1,25 @@
#ifndef RESISTOR_COLOR_DUO_H
#define RESISTOR_COLOR_DUO_H
typedef enum {
BLACK=0,
BROWN,
RED,
ORANGE,
YELLOW,
GREEN,
BLUE,
VIOLET,
GREY,
WHITE,
ERROR=-1,
} resistor_band_t;
extern resistor_band_t color_code(resistor_band_t *);
#ifdef TESTALL
#undef TEST_IGNORE
#define TEST_IGNORE() {}
#endif
#endif