Files
brlib/c/include/bits.h

522 lines
11 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* bits.h - bits functions.
*
* Copyright (C) 2021-2022 Bruno Raoult ("br")
* Licensed under the GNU General Public License v3.0 or later.
* Some rights reserved. See COPYING.
*
* You should have received a copy of the GNU General Public License along with this
* program. If not, see <https://www.gnu.org/licenses/gpl-3.0-standalone.html>.
*
* SPDX-License-Identifier: GPL-3.0-or-later <https://spdx.org/licenses/GPL-3.0-or-later.html>
*
*/
#ifndef BITS_H
#define BITS_H
#include <stdint.h>
#include <stdbool.h>
/* next include will define __WORDSIZE: 32 or 64
*/
#include <bits/wordsize.h>
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
/* no plan to support 32bits for now...
*/
#if __WORDSIZE != 64
#error "Only 64 bits word size supported."
#endif
/* fixed-size types
*/
typedef int64_t s64;
typedef int32_t s32;
typedef int16_t s16;
typedef int8_t s8;
typedef uint64_t u64;
typedef uint32_t u32;
typedef uint16_t u16;
typedef uint8_t u8;
/* convenience types
*/
typedef unsigned long int ulong;
typedef unsigned int uint;
typedef unsigned short ushort;
typedef unsigned char uchar;
/* char is a special case, as it can be signed or unsigned
*/
typedef signed char schar;
/* count trailing zeroes : 00101000 -> 3
* ^^^
*/
static __always_inline int ctz64(u64 n)
{
# if __has_builtin(__builtin_ctzl)
# ifdef DEBUG_BITS
log_f(1, "builtin ctzl.\n");
# endif
return __builtin_ctzl(n);
# elif __has_builtin(__builtin_clzl)
# ifdef DEBUG_BITS
log_f(1, "builtin clzl.\n");
# endif
return __WORDSIZE - (__builtin_clzl(n & -n) + 1);
# else
# ifdef DEBUG_BITS
log_f(1, "emulated.\n");
# endif
return popcount64((n & n) 1);
# endif
}
static __always_inline int ctz32(u32 n)
{
# if __has_builtin(__builtin_ctz)
# ifdef DEBUG_BITS
log_f(1, "builtin ctz.\n");
# endif
return __builtin_ctzl(n);
# elif __has_builtin(__builtin_clz)
# ifdef DEBUG_BITS
log_f(1, "builtin clz.\n");
# endif
return __WORDSIZE - (__builtin_clz(n & -n) + 1);
# else
# ifdef DEBUG_BITS
log_f(1, "emulated.\n");
# endif
return popcount32((n & n) 1);
# endif
}
/* clz - count leading zeroes : 00101000 -> 2
* ^^
*/
static __always_inline int clz64(u64 n)
{
# if __has_builtin(__builtin_clzl)
# ifdef DEBUG_BITS
log_f(1, "builtin.\n");
# endif
return __builtin_clzl(n);
# else
# ifdef DEBUG_BITS
log_f(1, "emulated.\n");
# endif
u64 r, q;
r = (n > 0xFFFFFFFF) << 5; n >>= r;
q = (n > 0xFFFF) << 4; n >>= q; r |= q;
q = (n > 0xFF ) << 3; n >>= q; r |= q;
q = (n > 0xF ) << 2; n >>= q; r |= q;
q = (n > 0x3 ) << 1; n >>= q; r |= q;
r |= (n >> 1);
return 64 - r - 1;
# endif
}
static __always_inline int clz32(u32 n)
{
# if __has_builtin(__builtin_clz)
# ifdef DEBUG_BITS
log_f(1, "builtin.\n");
# endif
return __builtin_clz(n);
# else
# ifdef DEBUG_BITS
log_f(1, "emulated.\n");
# endif
u32 r, q;
r = (n > 0xFFFF) << 4; n >>= r;
q = (n > 0xFF ) << 3; n >>= q; r |= q;
q = (n > 0xF ) << 2; n >>= q; r |= q;
q = (n > 0x3 ) << 1; n >>= q; r |= q;
r |= (n >> 1);
return 32 - r - 1;
# endif
}
/* fls - find last set : 00101000 -> 6
* ^
*/
static __always_inline int fls64(u64 n)
{
if (!n)
return 0;
return 64 - clz64(n);
}
static __always_inline int fls32(u32 n)
{
if (!n)
return 0;
return 32 - clz32(n);
}
/* find first set : 00101000 -> 4
* ^
*/
static __always_inline uint ffs64(u64 n)
{
# if __has_builtin(__builtin_ffsl)
# ifdef DEBUG_BITS
log_f(1, "builtin ffsl.\n");
# endif
return __builtin_ffsl(n);
# elif __has_builtin(__builtin_ctzl)
# ifdef DEBUG_BITS
log_f(1, "builtin ctzl.\n");
# endif
if (n == 0)
return (0);
return __builtin_ctzl(n) + 1;
# else
# ifdef DEBUG_BITS
log_f(1, "emulated.\n");
# endif
return popcount64(n ^ ~-n);
# endif
}
static __always_inline uint ffs32(u32 n)
{
# if __has_builtin(__builtin_ffs)
# ifdef DEBUG_BITS
log_f(1, "builtin ffs.\n");
# endif
return __builtin_ffs(n);
# elif __has_builtin(__builtin_ctz)
# ifdef DEBUG_BITS
log_f(1, "builtin ctz.\n");
# endif
if (n == 0)
return (0);
return __builtin_ctz(n) + 1;
# else
# ifdef DEBUG_BITS
log_f(1, "emulated.\n");
# endif
return popcount32(n ^ ~-n);
# endif
}
/* count set bits: 10101000 -> 3
* ^ ^ ^
*/
static __always_inline int popcount64(u64 n)
{
# if __has_builtin(__builtin_popcountl)
# ifdef DEBUG_BITS
log_f(1, "builtin.\n");
# endif
return __builtin_popcountl(n);
# else
# ifdef DEBUG_BITS
log_f(1, "emulated.\n");
# endif
int count = 0;
while (n) {
count++;
n &= (n - 1);
}
return count;
# endif
}
static __always_inline int popcount32(u32 n)
{
# if __has_builtin(__builtin_popcount)
# ifdef DEBUG_BITS
log_f(1, "builtin.\n");
# endif
return __builtin_popcount(n);
# else
# ifdef DEBUG_BITS
log_f(1, "emulated.\n");
# endif
int count = 0;
while (n) {
count++;
n &= (n - 1);
}
return count;
# endif
}
/* rolXX are taken from kernel's <linux/bitops.h> are are:
* SPDX-License-Identifier: GPL-2.0
*/
/**
* rol64 - rotate a 64-bit value left
* @word: value to rotate
* @shift: bits to roll
*/
static inline u64 rol64(u64 word, unsigned int shift)
{
return (word << (shift & 63)) | (word >> ((-shift) & 63));
}
/**
* ror64 - rotate a 64-bit value right
* @word: value to rotate
* @shift: bits to roll
*/
static inline u64 ror64(u64 word, unsigned int shift)
{
return (word >> (shift & 63)) | (word << ((-shift) & 63));
}
/**
* rol32 - rotate a 32-bit value left
* @word: value to rotate
* @shift: bits to roll
*/
static inline u32 rol32(u32 word, unsigned int shift)
{
return (word << (shift & 31)) | (word >> ((-shift) & 31));
}
/**
* ror32 - rotate a 32-bit value right
* @word: value to rotate
* @shift: bits to roll
*/
static inline u32 ror32(u32 word, unsigned int shift)
{
return (word >> (shift & 31)) | (word << ((-shift) & 31));
}
/**
* rol16 - rotate a 16-bit value left
* @word: value to rotate
* @shift: bits to roll
*/
static inline u16 rol16(u16 word, unsigned int shift)
{
return (word << (shift & 15)) | (word >> ((-shift) & 15));
}
/**
* ror16 - rotate a 16-bit value right
* @word: value to rotate
* @shift: bits to roll
*/
static inline u16 ror16(u16 word, unsigned int shift)
{
return (word >> (shift & 15)) | (word << ((-shift) & 15));
}
/**
* rol8 - rotate an 8-bit value left
* @word: value to rotate
* @shift: bits to roll
*/
static inline u8 rol8(u8 word, unsigned int shift)
{
return (word << (shift & 7)) | (word >> ((-shift) & 7));
}
/**
* ror8 - rotate an 8-bit value right
* @word: value to rotate
* @shift: bits to roll
*/
static inline u8 ror8(u8 word, unsigned int shift)
{
return (word >> (shift & 7)) | (word << ((-shift) & 7));
}
/**
* ilog2 -
*/
static __always_inline __attribute__((const))
int __ilog2_u32(u32 n)
{
return fls32(n) - 1;
}
static __always_inline __attribute__((const))
int __ilog2_u64(u64 n)
{
return fls64(n) - 1;
}
/**
* is_power_of_2() - check if a value is a power of two
* @n: the value to check
*
* Determine whether some value is a power of two, where zero is
* *not* considered a power of two.
* Return: true if @n is a power of 2, otherwise false.
*/
static inline __attribute__((const))
bool is_power_of_2(unsigned long n)
{
return (n != 0 && ((n & (n - 1)) == 0));
}
/**
* ilog2 - log base 2 of 32-bit or a 64-bit unsigned value
* @n: parameter
*
* constant-capable log of base 2 calculation
* - this can be used to initialise global variables from constant data, hence
* the massive ternary operator construction
*
* selects the appropriately-sized optimised version depending on sizeof(n)
*/
#define ilog2(n) \
( \
__builtin_constant_p(n) ? \
((n) < 2 ? 0 : \
63 - __builtin_clzll(n)) : \
(sizeof(n) <= 4) ? \
__ilog2_u32(n) : \
__ilog2_u64(n) \
)
/**
* roundup_pow_of_two - round the given value up to nearest power of two
* @n: parameter
*
* round the given value up to the nearest power of two
* - the result is undefined when n == 0
* - this can be used to initialise global variables from constant data
*/
#define roundup_pow_of_two(n) \
( \
__builtin_constant_p(n) ? ( \
((n) == 1) ? 1 : \
(1UL << (ilog2((n) - 1) + 1)) \
) : \
__roundup_pow_of_two(n) \
)
/**
* rounddown_pow_of_two - round the given value down to nearest power of two
* @n: parameter
*
* round the given value down to the nearest power of two
* - the result is undefined when n == 0
* - this can be used to initialise global variables from constant data
*/
#define rounddown_pow_of_two(n) \
( \
__builtin_constant_p(n) ? ( \
(1UL << ilog2(n))) : \
__rounddown_pow_of_two(n) \
)
static inline __attribute_const__
int __order_base_2(unsigned long n)
{
return n > 1 ? ilog2(n - 1) + 1 : 0;
}
/**
* order_base_2 - calculate the (rounded up) base 2 order of the argument
* @n: parameter
*
* The first few values calculated by this routine:
* ob2(0) = 0
* ob2(1) = 0
* ob2(2) = 1
* ob2(3) = 2
* ob2(4) = 2
* ob2(5) = 3
* ... and so on.
*/
#define order_base_2(n) \
( \
__builtin_constant_p(n) ? ( \
((n) == 0 || (n) == 1) ? 0 : \
ilog2((n) - 1) + 1) : \
__order_base_2(n) \
)
static inline __attribute__((const))
int __bits_per(unsigned long n)
{
if (n < 2)
return 1;
if (is_power_of_2(n))
return order_base_2(n) + 1;
return order_base_2(n);
}
/**
* bits_per - calculate the number of bits required for the argument
* @n: parameter
*
* This is constant-capable and can be used for compile time
* initializations, e.g bitfields.
*
* The first few values calculated by this routine:
* bf(0) = 1
* bf(1) = 1
* bf(2) = 2
* bf(3) = 2
* bf(4) = 3
* ... and so on.
*/
#define bits_per(n) \
( \
__builtin_constant_p(n) ? ( \
((n) == 0 || (n) == 1) \
? 1 : ilog2(n) + 1 \
) : \
__bits_per(n) \
)
/** bit_for_each - iterate over an u64/u32 bits
* @pos: an int used as current bit
* @tmp: a temp u64/u32 used as temporary storage
* @ul: the u64/u32 to loop over
*
* Usage:
* u64 u=139, _t; // u=b10001011
* int cur;
* bit_for_each64(cur, _t, u) {
* printf("%d\n", cur);
* }
* This will display the position of each bit set in ul: 1, 2, 4, 8
*
* I should probably re-think the implementation...
*/
#define bit_for_each64(pos, tmp, ul) \
for (tmp = ul, pos = ffs64(tmp); tmp; tmp &= (tmp - 1), pos = ffs64(tmp))
#define bit_for_each32(pos, tmp, ul) \
for (tmp = ul, pos = ffs32(tmp); tmp; tmp &= (tmp - 1), pos = ffs32(tmp))
/** or would it be more useful (counting bits from zero instead of 1) ?
*/
#define bit_for_each64_2(pos, tmp, ul) \
for (tmp = ul, pos = ctz64(tmp); tmp; tmp ^= 1UL << pos, pos = ctz64(tmp))
#define bit_for_each32_2(pos, tmp, ul) \
for (tmp = ul, pos = ctz32(tmp); tmp; tmp ^= 1U << pos, pos = ctz32(tmp))
#endif /* BITS_H */