Files
brchess/src/hash.c

423 lines
12 KiB
C

/* hash.c - hash management.
*
* Copyright (C) 2024 Bruno Raoult ("br")
* Licensed under the GNU General Public License v3.0 or later.
* Some rights reserved. See COPYING.
*
* You should have received a copy of the GNU General Public License along with this
* program. If not, see <https://www.gnu.org/licenses/gpl-3.0-standalone.html>.
*
* SPDX-License-Identifier: GPL-3.0-or-later <https://spdx.org/licenses/GPL-3.0-or-later.html>
*
*/
#include <string.h>
#include <assert.h>
#include <brlib.h>
#include <bitops.h>
#include "chessdefs.h"
#include "alloc.h"
#include "position.h"
#include "piece.h"
#include "hash.h"
u64 zobrist_pieces[16][64];
u64 zobrist_castling[4 * 4 + 1];
u64 zobrist_turn; /* for black, XOR each ply */
u64 zobrist_ep[9]; /* 0-7: ep file, 8: SQUARE_NONE */
hasht_t hash_tt; /* main transposition table */
/**
* zobrist_init() - initialize zobrist tables.
*
* Initialize all zobrist random bitmasks. Must be called before any other
* zobrist function, and can be called once only (further calls will be ignored).
*/
void zobrist_init(void)
{
static bool called = false;
if (!called) {
called = true;
for (color_t c = WHITE; c <= BLACK; ++c) {
for (piece_type_t p = PAWN; p <= KING; ++p)
for (square_t sq = A1; sq <= H8; ++sq)
zobrist_pieces[MAKE_PIECE(p, c)][sq] = rand64();
}
for (castle_rights_t c = CASTLE_NONE; c <= CASTLE_ALL; ++c)
zobrist_castling[c] = rand64();
for (file_t f = FILE_A; f <= FILE_H; ++f)
zobrist_ep[f] = rand64();
zobrist_ep[8] = 0; /* see EP_ZOBRIST_IDX macro */
zobrist_turn = rand64();
}
}
/**
* zobrist_calc() - calculate a position zobrist hash.
* @pos: &position
*
* Normally, Zobrist keys are incrementally calculated when doing or
* undoing a move.
* This function should normally only be called:
* - When starting a new position
* - To verify incremental Zobrist calculation is correct
*
* @return: @pos Zobrist key
*/
hkey_t zobrist_calc(pos_t *pos)
{
hkey_t key = 0;
if (pos->turn == BLACK)
key ^= zobrist_turn;
for (color_t c = WHITE; c <= BLACK; ++c) {
for (piece_type_t pt = PAWN; pt <= KING; ++pt) {
piece_t piece = MAKE_PIECE(pt, c);
bitboard_t bb = pos->bb[c][pt];
while (bb) {
square_t sq = bb_next(&bb);
key ^= zobrist_pieces[piece][sq];
}
}
}
key ^= zobrist_castling[pos->castle];
key ^= zobrist_ep[EP_ZOBRIST_IDX(pos->en_passant)];
return key;
}
/**
* zobrist_verify() - verify current position Zobrist key.
* @pos: &position
*
* Verify that position Zobrist key matches a full Zobrist calculation.
* This function cannot be called if ZOBRIST_VERIFY is not set.
*
* @return: True if Zobrist key is OK.
*/
#ifdef ZOBRIST_VERIFY
#pragma push_macro("BUG_ON") /* force BUG_ON and WARN_ON */
#pragma push_macro("WARN_ON")
#undef BUG_ON
#define BUG_ON
#undef WARN_ON
#define WARN_ON
bool zobrist_verify(pos_t *pos)
{
hkey_t diff, key = zobrist_calc(pos);
if (pos->key == key)
return true;
printf("key verify: cur=%#lx != %#lx\n", pos->key, key);
/* try to find-out the key in different zobrist tables */
diff = pos->key ^ key;
for (color_t c = WHITE; c <= BLACK; ++c) {
for (piece_type_t p = PAWN; p <= KING; ++p)
for (square_t sq = A1; sq <= H8; ++sq)
if (diff == zobrist_pieces[MAKE_PIECE(p, c)][sq]) {
warn(true, "zobrist difference is piece:[%s][%s]\n",
piece_to_fen(MAKE_PIECE(p, c)), sq_to_string(sq));
goto end;
}
}
for (castle_rights_t c = CASTLE_NONE; c <= CASTLE_ALL; ++c) {
if (diff == zobrist_castling[c]) {
warn(true, "zobrist difference is castling:[%d]\n", c);
goto end;
}
}
for (file_t f = FILE_A; f <= FILE_H; ++f) {
if (diff == zobrist_ep[f]) {
warn(true, "zobrist difference is ep:[%d]\n", f);
goto end;
}
}
if (diff == zobrist_turn) {
warn(true, "zobrist difference is turn\n");
goto end;
}
warn(true, "zobrist diff %lx is unknown\n", diff);
end:
bug_on(false);
/* not reached */
return true;
}
#pragma pop_macro("WARN_ON")
#pragma pop_macro("BUG_ON")
#endif
/**
* tt_create() - create transposition table
* @sizemb: s32 size of hash table in Mb
*
* Create a hash table of max @sizemb (or HASH_SIZE_MBif @sizemb <= 0) Mb size.
* This function must be called at startup.
*
* The number of bucket_t entries fitting in @sizemb is calculated, and rounded
* (down) to a power of 2.
* This means the actual size could be lower than @sizemb (nearly halved in
* worst case).
*
* If transposition hashtable already exists and new size would not change,
* the old one is cleared.
* If transposition hashtable already exists and new size is different,
* the old one is destroyed first (old data is not preserved).
*
* TODO:
* - Rebuild old hashtable data ?
*
* @return: hash table size in Mb. If memory allocation fails, the function does
* not return.
*/
int tt_create(s32 sizemb)
{
size_t bytes, target_nbuckets;
u32 nbits;
static_assert(sizeof(hentry_t) == 16, "fatal: hentry_t size != 16");
//printf("mb = %'7u ", sizemb);
/* adjust tt size */
if (sizemb <= 0)
sizemb = HASH_SIZE_DEFAULT;
sizemb = clamp(sizemb, HASH_SIZE_MIN, HASH_SIZE_MAX);
bytes = sizemb * 1024ull * 1024ull; /* bytes wanted */
target_nbuckets = bytes / sizeof(bucket_t); /* target buckets */
nbits = msb64(target_nbuckets); /* adjust to power of 2 */
if (hash_tt.nbits != nbits) {
if (hash_tt.keys)
tt_delete();
hash_tt.nbits = nbits;
hash_tt.nbuckets = BIT(hash_tt.nbits);
hash_tt.nkeys = hash_tt.nbuckets * ENTRIES_PER_BUCKET;
hash_tt.bytes = hash_tt.nbuckets * sizeof(bucket_t);
hash_tt.mb = hash_tt.bytes / 1024 / 1024;
hash_tt.mask = -1ull >> (64 - nbits);
hash_tt.keys = safe_alloc(hash_tt.bytes);
//printf("bits=%2d size=%'15lu/%'6d Mb/%'14lu buckets ",
// hash_tt.nbits, hash_tt.bytes, hash_tt.mb, hash_tt.nbuckets);
//printf("mask=%9x\n", hash_tt.mask);
}
//else {
// printf("unchanged (cleared)\n");
//}
/* attention - may fail ! */
tt_clear();
return hash_tt.nbits;
}
/**
* tt_clear() - clear transposition table
*
* Reset hashtable entries (if available) and statistic information.
*/
void tt_clear()
{
if (hash_tt.keys)
memset(hash_tt.keys, 0, hash_tt.bytes);
hash_tt.used_keys = 0;
hash_tt.collisions = 0;
hash_tt.hits = 0;
hash_tt.misses = 0;
}
/**
* tt_delete() - delete transposition table
*
* free hashtable data.
*/
void tt_delete()
{
if (hash_tt.keys) {
safe_free(hash_tt.keys);
hash_tt.keys = NULL;
}
tt_clear();
}
/**
* tt_probe() - probe tt for an entry
*
*
*/
hentry_t *tt_probe(hkey_t key)
{
bucket_t *bucket;
hentry_t *entry;
int i;
bug_on(!hash_tt.keys);
bucket = hash_tt.keys + (key & hash_tt.mask);
/* find key in buckets */
for (i = 0; i < ENTRIES_PER_BUCKET; ++i) {
entry = bucket->entry + i;
if (key == entry->key)
break;
}
if (i < ENTRIES_PER_BUCKET)
return entry;
return NULL;
}
/**
* tt_probe_perft() - probe tt for an entry (perft version)
* @key: Zobrist (hkey_t) key
* @depth: depth from search root
*
* Search transposition for @key entry with @depth depth.
*
* @return: @hentry_t address is found, TT_MISS otherwise.
*/
hentry_t *tt_probe_perft(const hkey_t key, const u16 depth)
{
bucket_t *bucket;
hentry_t *entry;
int i;
bug_on(!hash_tt.keys);
bucket = hash_tt.keys + (key & hash_tt.mask);
/* find key in buckets */
for (i = 0; i < ENTRIES_PER_BUCKET; ++i) {
entry = bucket->entry + i;
if (key == entry->key && HASH_PERFT_DEPTH(entry->data) == depth) {
hash_tt.hits++;
/*
* printf("tt hit: key=%lx depth=%d bucket=%lu entry=%d!\n",
* key, depth, bucket - hash_tt.keys, i);
*/
return entry;
}
}
/*
* printf("tt miss: key=%lx depth=%d ucket=%lu\n",
* key, depth, bucket - hash_tt.keys);
*/
hash_tt.misses++;
return TT_MISS;
}
/**
* tt_store_perft() - store a transposition table entry (perft version)
* @key: Zobrist (hkey_t) key
* @depth: depth from search root
* @nodes: value to store
*
*/
hentry_t *tt_store_perft(const hkey_t key, const u16 depth, const u64 nodes)
{
bucket_t *bucket;
hentry_t *entry;
int replace = -1;
uint mindepth = 1024;
u64 data = HASH_PERFT(depth, nodes);
//printf("tt_store: key=%lx data=%lx depth=%d=%d nodes=%lu=%lu\n",
// key, data, depth, HASH_PERFT_DEPTH(data), nodes, HASH_PERFT_VAL(data));
/*
* printf("tt_store: key=%lx depth=%d nodes=%lu ",
* key, depth, nodes);
*/
bug_on(!hash_tt.keys);
bucket = hash_tt.keys + (key & hash_tt.mask);
/* find key in buckets */
for (int i = 0; i < ENTRIES_PER_BUCKET; ++i) {
entry = bucket->entry + i;
//if (!entry->key) {
// replace = i;
//hash_tt.used_keys++;
// break;
//}
if (key == entry->key) {
if (depth == HASH_PERFT_DEPTH(entry->data)) {
printf("tt_store: dup key=%lx depth=%d, this should not happen!\n",
key, depth);
return NULL;
}
}
/* always keep higher nodes */
if (HASH_PERFT_DEPTH(entry->data) < mindepth) {
mindepth = HASH_PERFT_DEPTH(entry->data);
replace = i;
}
}
if (replace >= 0) {
entry = bucket->entry + replace;
hash_tt.used_keys += entry->key == 0;
hash_tt.collisions += entry->key && (key != entry->key);
/*
* if (HASH_PERFT_VAL(entry->data)) {
* printf("REPL entry=%lu[%d] key=%lx->%lx val=%lu->%lu\n",
* bucket - hash_tt.keys, replace,
* entry->key, key,
* HASH_PERFT_VAL(entry->data), nodes);
* } else {
* printf("NEW entry=%lu[%d] key=%lx val=%lu\n",
* bucket - hash_tt.keys, replace,
* entry->key, nodes);
* }
*/
entry->key = key;
entry->data = data;
return entry;
} else {
//printf("TT full, skip\n");
}
return NULL;
}
/**
* tt_info() - print hash-table information.
*/
void tt_info()
{
if (hash_tt.keys) {
printf("TT: Mb:%d buckets:%'lu (bits:%u mask:%#x) entries:%'lu\n",
hash_tt.mb, hash_tt.nbuckets, hash_tt.nbits,
hash_tt.mask, hash_tt.nkeys);
} else {
printf("TT: not set.\n");
}
}
/**
* tt_stats() - print hash-table usage.
*/
void tt_stats()
{
if (hash_tt.keys) {
float percent = 100.0 * hash_tt.used_keys / hash_tt.nkeys;
printf("hash: used:%'lu/%'lu (%.2f%%) hit:%'lu miss:%'lu coll:%'lu\n",
hash_tt.used_keys, hash_tt.nkeys, percent,
hash_tt.hits, hash_tt.misses,
hash_tt.collisions);
} else {
printf("hash: not set.\n");
}
}