Files
advent-of-code/2020/day24/aoc-c.c

243 lines
5.7 KiB
C

/* ex1-c: Advent2020, day 24/part 1
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "bits.h"
#include "pool.h"
#include "debug.h"
#include "hashtable.h"
#include "debug.h"
/* In day 24 tasks, we do not care the order of tiles, as we regenerate
* a new list after each process.
* So we will rely on a hashtable, which will allow to quickly find a
* given point.
* We use here two hash-tables: One to keep the current black tiles, and
* one for the neighbours count.
* My first try with the Linux kernel hashtables implementation.
*/
typedef union coord {
u64 val;
struct {
s32 x, y;
};
} coord_t;
typedef struct point {
coord_t pos;
int count;
struct hlist_node coll; /* entry in hash table */
} point_t;
#define HBITS 11 /* in bits: 12 bits = 4096 */
DEFINE_HASHTABLE(hasht_black, HBITS); /* current black tiles */
DEFINE_HASHTABLE(hasht_count, HBITS); /* count of neighbours */
pool_t *pt_pool;
static __always_inline u32 hash(coord_t p)
{
return hash_64(p.val, HASH_BITS(hasht_black));
}
/**
* find_point - find entry in an hashtable bucket
*/
static point_t *find_point(struct hlist_head *head, coord_t p)
{
point_t *point;
hlist_for_each_entry(point, head, coll) {
if (point->pos.val == p.val)
return point;
}
return NULL;
}
/**
* add_point - add point in hasht_count hashtable (used to count neighbours)
*/
static point_t *add_point(coord_t pos)
{
point_t *new;
u32 h;
h = hash(pos);
if (!(new = find_point(&hasht_count[h], pos))) {
new = pool_get(pt_pool);
new->pos.val = pos.val;
new->count = 0;
hlist_add_head(&new->coll, &hasht_count[h]);
}
new->count++;
return new;
}
/**
* init_point - add point in hasht_black hashtable, remove if it exists (init)
*/
static point_t *init_point(coord_t pos)
{
point_t *new;
u32 h;
h = hash(pos);
if ((new = find_point(&hasht_black[h], pos))) {
hlist_del(&new->coll);
pool_add(pt_pool, new);
new = NULL;
} else {
new = pool_get(pt_pool);
new->pos.val = pos.val;
new->count = 0;
hlist_add_head(&new->coll, &hasht_black[h]);
}
return new;
}
/**
* count_black - count elements in hasht_black
*/
static int count_black()
{
point_t *cur;
int res = 0;
ulong bucket;
hash_for_each(hasht_black, bucket, cur, coll)
res++;
return res;
}
static const coord_t neighbours [] = {
{ .x = 2, .y = 0 }, { .x = -2, .y = 0 }, /* east and west */
{ .x = 1, .y = -1 }, { .x = 1, .y = 1 }, /* SE and NE */
{ .x = -1, .y = -1 }, { .x = -1, .y = 1 } /* SW and NW */
};
/**
* count_neighbours - count hasht_black neighbours, result in hasht_next
*/
static void count_neighbours()
{
point_t *cur;
u32 bucket;
hash_for_each(hasht_black, bucket, cur, coll) {
for (int i = 0; i < (int) ARRAY_SIZE(neighbours); ++i) {
coord_t neigh = cur->pos;
neigh.x += neighbours[i].x;
neigh.y += neighbours[i].y;
add_point(neigh);
}
}
}
/**
* adjust_neighbours - adjust hasht_next according to rules
*/
static void adjust_neighbours()
{
point_t *pt_cur, *pt_count;
u32 bucket;
struct hlist_node *tmp;
/* 1) check hasht_black tiles (currently black)
*/
hash_for_each_safe(hasht_black, bucket, tmp, pt_cur, coll) {
int h = hash(pt_cur->pos);
point_t *pt_count = find_point(&hasht_count[h], pt_cur->pos);
if (!pt_count || pt_count->count > 2) {
hash_del(&pt_cur->coll);
pool_add(pt_pool, pt_cur);
}
/* we do not want to re-consider this point in next loop
*/
if (pt_count) {
hash_del(&pt_count->coll);
pool_add(pt_pool, pt_count);
}
}
/* 2) check remaining points in hasht_next (currently white)
*/
hash_for_each_safe(hasht_count, bucket, tmp, pt_count, coll) {
hash_del(&pt_count->coll);
if (pt_count->count == 2) {
hash_add(hasht_black, &pt_count->coll, hash(pt_count->pos));
} else {
pool_add(pt_pool, pt_count);
}
}
}
static void parse()
{
size_t alloc;
ssize_t len;
char *buf = NULL;
while ((len = getline(&buf, &alloc, stdin)) > 0) {
buf[len - 1] = 0;
coord_t p = { .val = 0 };
char *c = buf;
while (*c) {
switch (*c) {
case 'e': ++p.x; break;
case 'w': --p.x; break;
case 's': --p.y; ++c; break;
case 'n': ++p.y; ++c;
}
if (*c == 'e')
++p.x;
else if (*c == 'w')
--p.x;
c++;
}
init_point(p);
}
free(buf);
}
static int usage(char *prg)
{
fprintf(stderr, "Usage: %s [-d debug_level] [-p part]\n", prg);
return 1;
}
int main(ac, av)
int ac;
char **av;
{
int opt, part = 1;
int res = 0;
while ((opt = getopt(ac, av, "d:p:")) != -1) {
switch (opt) {
case 'd':
debug_level_set(atoi(optarg));
break;
case 'p': /* 1 or 2 */
part = atoi(optarg);
if (part < 1 || part > 2)
default:
return usage(*av);
}
}
pt_pool = pool_create("pool_points", 512, sizeof(point_t));
parse();
if (part == 2) {
for (int i = 0; i < 100; ++i) {
count_neighbours();
adjust_neighbours();
}
}
res = count_black();
printf("%s : res=%d\n", *av, res);
pool_destroy(pt_pool);
exit (0);
}