610 lines
19 KiB
C
610 lines
19 KiB
C
/* aoc-c.c: Advent of Code 2022, day 16
|
|
*
|
|
* Copyright (C) 2023 Bruno Raoult ("br")
|
|
* Licensed under the GNU General Public License v3.0 or later.
|
|
* Some rights reserved. See COPYING.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with this
|
|
* program. If not, see <https://www.gnu.org/licenses/gpl-3.0-standalone.html>.
|
|
*
|
|
* SPDX-License-Identifier: GPL-3.0-or-later <https://spdx.org/licenses/GPL-3.0-or-later.html>
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "br.h"
|
|
#include "list.h"
|
|
#include "pool.h"
|
|
#include "debug.h"
|
|
#include "bits.h"
|
|
|
|
#include "aoc.h"
|
|
|
|
pool_t *pool_valve;
|
|
|
|
union val {
|
|
u32 val;
|
|
char str[3];
|
|
};
|
|
|
|
enum state {
|
|
CLOSED,
|
|
OPENED
|
|
};
|
|
|
|
struct worker {
|
|
struct valve *pos;
|
|
int depth;
|
|
int time;
|
|
};
|
|
|
|
struct valve {
|
|
int index; /* -1 for zero flow rate */
|
|
union val val;
|
|
enum state state;
|
|
int rate;
|
|
int evalflow, evaltime;
|
|
int playedflow, playedtime;
|
|
struct hlist_node hlist;
|
|
struct list_head index_sorted;
|
|
struct list_head flow_sorted;
|
|
struct list_head eval;
|
|
int worker;
|
|
struct list_head played;
|
|
int ntunnels, tottunnels;
|
|
struct valve **tunnels; /* array */
|
|
};
|
|
|
|
static struct graph {
|
|
struct valve *aa; /* head ("AA") */
|
|
int npositive; /* only "AA" & working valves */
|
|
int nvalves;
|
|
u64 opened; /* bitmask of opened valves */
|
|
u64 openable; /* bitmask of openable valves */
|
|
struct list_head index_sorted; /* TO REMOVE ? */
|
|
struct list_head flow_sorted;
|
|
struct list_head eval;
|
|
struct list_head played[2];
|
|
struct valve **indexed_all;
|
|
int *dist; /* 2-D array */
|
|
} graph = {
|
|
.aa = NULL,
|
|
.npositive = 0,
|
|
.nvalves = 0,
|
|
.index_sorted = LIST_HEAD_INIT(graph.index_sorted),
|
|
.flow_sorted = LIST_HEAD_INIT(graph.flow_sorted),
|
|
.eval = LIST_HEAD_INIT(graph.eval),
|
|
.played[0] = LIST_HEAD_INIT(graph.played[0]),
|
|
.played[1] = LIST_HEAD_INIT(graph.played[1]),
|
|
.indexed_all = NULL,
|
|
.dist = NULL
|
|
};
|
|
|
|
#define POS(a, b) ((a)*graph.nvalves + (b))
|
|
#define DIST(a, b) (graph.dist[POS((a), (b))])
|
|
|
|
static void print_valves()
|
|
{
|
|
struct valve *cur;
|
|
printf("**** graph: .head=%p npositive=%d\n", graph.aa, graph.npositive);
|
|
printf("index1: ");
|
|
list_for_each_entry(cur, &graph.index_sorted, index_sorted) {
|
|
printf("%d:%s ", cur->index, cur->val.str);
|
|
}
|
|
printf("\n");
|
|
printf("index2: ");
|
|
for (int i = 0; i < graph.nvalves; ++i) {
|
|
printf("%d:%s ", graph.indexed_all[i]->index, graph.indexed_all[i]->val.str);
|
|
}
|
|
printf("\n");
|
|
if (testmode()) {
|
|
printf("distances:\n ");
|
|
for (int i = 0; i < graph.nvalves; ++i) {
|
|
printf(" %s", graph.indexed_all[i]->val.str);
|
|
}
|
|
printf("\n");
|
|
for (int i = 0; i < graph.nvalves; ++i) {
|
|
printf("%s ", graph.indexed_all[i]->val.str);
|
|
for (int j = 0; j < graph.nvalves; ++j) {
|
|
printf("%5d ", DIST(i, j));
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
printf("flow_sorted: ");
|
|
list_for_each_entry(cur, &graph.flow_sorted, flow_sorted) {
|
|
printf("%s:%d ", cur->val.str, cur->rate);
|
|
}
|
|
printf("\n");
|
|
printf("openable: %#lx ", graph.openable);
|
|
int pos, tmp;
|
|
bit_for_each64_2(pos, tmp, graph.openable) {
|
|
printf("%d ", pos);
|
|
}
|
|
printf("\n");
|
|
|
|
|
|
}
|
|
|
|
#define PAD3 log(3, "%*s", _depth * 2, "")
|
|
#define PAD4 log(4, "%*s", _depth * 2, "")
|
|
|
|
/**
|
|
* eval() - eval possible moves from @flow_sorted list.
|
|
* @_depth: recursivity depth (for debug only, TODO: remove).
|
|
* @valve: &starting valve (where we are).
|
|
* @depth: remaining depth (-1: full depth).
|
|
* @pick: max position (in @flow_sorted) to pick moves from (-1 for all).
|
|
* @time: remaining time.
|
|
* @pressure: total pressure per time unit so far.
|
|
*
|
|
* Find the "best" next move by evaluating up to @depth moves, using only the
|
|
* first @pick elements in @flow_sorted list, and within @time remaining time.
|
|
*
|
|
* @depth and @picked may be linked, for instance to fully explore the first N
|
|
* possibilities in @flow_sorted with a N depth.
|
|
*
|
|
* @Return: the current position eval.
|
|
*/
|
|
static struct valve *eval(int _depth, struct valve *pos, int depth, int pick, int time, int pressure)
|
|
{
|
|
struct valve *cur, *best = NULL, *sub;
|
|
struct list_head *list_flow, *tmp;
|
|
int _pick = pick, val = 0, val1, max = 0;
|
|
|
|
PAD3; log(3, "EVAL _depth=%d pos=%d[%s] depth=%d pick=%d time=%d pressure=%d\n",
|
|
_depth, pos->index, pos->val.str, depth, pick, time, pressure);
|
|
list_for_each_safe(list_flow, tmp, &graph.flow_sorted) {
|
|
cur = list_entry(list_flow, struct valve, flow_sorted);
|
|
int d = DIST(pos->index, cur->index);
|
|
PAD4; log(4, "dist(%s,%s) = %d\n", pos->val.str, cur->val.str, d);
|
|
if (!--_pick) {
|
|
PAD4; log(4, "pick exhausted\n");
|
|
continue;
|
|
}
|
|
if (time - (d + 1 + 1) < 0) {
|
|
PAD4; log(4, "time exhausted\n");
|
|
continue;
|
|
}
|
|
val = (time - (d + 1)) * cur->rate;
|
|
PAD4; log(4, "val=%d\n", val);
|
|
|
|
if (depth > 0) {
|
|
/* do not use list_del() here, to preserve prev/next pointers */
|
|
__list_del_entry(list_flow);
|
|
sub = eval(_depth + 1, cur, depth - 1, pick, time - d - 1, pressure + pos->rate);
|
|
list_flow->prev->next = list_flow;
|
|
list_flow->next->prev = list_flow;
|
|
} else {
|
|
sub = NULL;
|
|
}
|
|
val1 = sub? sub->evalflow: 0;
|
|
PAD3; log(3, "eval(%s->%s)= %5d = %d + %d", pos->val.str, cur->val.str,
|
|
val+val1, val, val1);
|
|
if (val + val1 > max) {
|
|
max = val + val1;
|
|
best = cur;
|
|
log(3, " NEW MAX !");
|
|
}
|
|
log(3, "\n");
|
|
}
|
|
if (best) {
|
|
best->evalflow = max;
|
|
PAD3; log(3, "EVAL returning best [%s] eval=%d\n", best->val.str, max);
|
|
}
|
|
return best;
|
|
}
|
|
|
|
/**
|
|
* eval() - eval possible moves from @flow_sorted list.
|
|
* @_depth: recursivity depth (for debug only, TODO: remove).
|
|
* @valve: &starting valve (where we are).
|
|
* @depth: remaining depth (-1: full depth).
|
|
* @pick: max position (in @flow_sorted) to pick moves from (-1 for all).
|
|
* @time: remaining time.
|
|
* @pressure: total pressure per time unit so far.
|
|
*
|
|
* Find the "best" next move by evaluating up to @depth moves, using only the
|
|
* first @pick elements in @flow_sorted list, and within @time remaining time.
|
|
*
|
|
* @depth and @picked may be linked, for instance to fully explore the first N
|
|
* possibilities in @flow_sorted with a N depth.
|
|
*
|
|
* @Return: the current position eval.
|
|
*/
|
|
static struct valve *eval2(int _depth, struct worker *worker, int pick, int pressure)
|
|
{
|
|
struct valve *cur, *best = NULL, *sub;
|
|
struct list_head *list_flow, *tmp;
|
|
int _pick = pick, val = 0, val1, max = 0;
|
|
|
|
PAD3; log(3, "EVAL _depth=%d pos=%d[%s] depth=%d pick=%d time=%d pressure=%d\n",
|
|
_depth, worker->pos->index, worker->pos->val.str, worker->depth,
|
|
pick, worker->time, pressure);
|
|
list_for_each_safe(list_flow, tmp, &graph.flow_sorted) {
|
|
cur = list_entry(list_flow, struct valve, flow_sorted);
|
|
int d = DIST(worker->pos->index, cur->index),
|
|
remain = worker->time - (d + 1);
|
|
PAD4; log(4, "dist(%s,%s) = %d\n", worker->pos->val.str, cur->val.str, d);
|
|
if (!--_pick) {
|
|
PAD4; log(4, "pick exhausted\n");
|
|
continue;
|
|
}
|
|
if (remain < 1) {
|
|
PAD4; log(4, "time exhausted\n");
|
|
continue;
|
|
}
|
|
val = remain * cur->rate;
|
|
PAD4; log(4, "val=%d\n", val);
|
|
|
|
if (worker->depth > 0) {
|
|
struct worker w = {
|
|
.pos = cur,
|
|
.depth = worker->depth - 1,
|
|
.time = remain
|
|
};
|
|
/* do not use list_del() here, to preserve prev/next pointers */
|
|
__list_del_entry(list_flow);
|
|
sub = eval2(_depth + 1, &w, pick, pressure + worker->pos->rate);
|
|
list_flow->prev->next = list_flow;
|
|
list_flow->next->prev = list_flow;
|
|
} else {
|
|
sub = NULL;
|
|
}
|
|
val1 = sub? sub->evalflow: 0;
|
|
PAD3; log(3, "eval2(%s->%s)= %5d = %d + %d", worker->pos->val.str, cur->val.str,
|
|
val+val1, val, val1);
|
|
if (val + val1 > max) {
|
|
max = val + val1;
|
|
best = cur;
|
|
log(3, " NEW MAX !");
|
|
}
|
|
log(3, "\n");
|
|
}
|
|
if (best) {
|
|
best->evalflow = max;
|
|
best->worker = 0; /* FIXME */
|
|
PAD3; log(3, "EVAL returning best [%s] worker=%d eval=%d\n", best->val.str,
|
|
best->worker, max);
|
|
}
|
|
return best;
|
|
}
|
|
|
|
/**
|
|
* eval() - eval possible moves from @flow_sorted list.
|
|
* @_depth: recursivity depth (for debug only, TODO: remove).
|
|
* @valve: &starting valve (where we are).
|
|
* @depth: remaining depth (-1: full depth).
|
|
* @pick: max position (in @flow_sorted) to pick moves from (-1 for all).
|
|
* @time: remaining time.
|
|
* @pressure: total pressure per time unit so far.
|
|
*
|
|
* Find the "best" next move by evaluating up to @depth moves, using only the
|
|
* first @pick elements in @flow_sorted list, and within @time remaining time.
|
|
*
|
|
* @depth and @picked may be linked, for instance to fully explore the first N
|
|
* possibilities in @flow_sorted with a N depth.
|
|
*
|
|
* @Return: the current position eval.
|
|
*/
|
|
static struct valve *eval3(int _depth, struct worker *worker, int pick, int pressure)
|
|
{
|
|
struct valve *cur, *best = NULL, *sub;
|
|
struct list_head *list_flow, *tmp;
|
|
int _pick = pick, val = 0, val1, max = 0, bestworker;
|
|
|
|
PAD3; log_f(3, "EVAL _depth=%d w0={ pos=%d[%s] depth=%d time=%d } w1={ pos=%d[%s] depth=%d time=%d } pick=%d pressure=%d \n",
|
|
_depth,
|
|
worker[0].pos->index, worker[0].pos->val.str,
|
|
worker[0].depth, worker[0].time,
|
|
worker[1].pos->index, worker[1].pos->val.str,
|
|
worker[1].depth, worker[1].time,
|
|
pick, pressure);
|
|
list_for_each_safe(list_flow, tmp, &graph.flow_sorted) {
|
|
cur = list_entry(list_flow, struct valve, flow_sorted);
|
|
int nworkers = worker[0].pos->index == worker[1].pos->index? 1: 2;
|
|
if (!--_pick) {
|
|
PAD4; log(4, "pick exhausted\n");
|
|
break;
|
|
}
|
|
for (int _w = 0; _w < nworkers; ++_w) {
|
|
struct worker *w = worker + _w;
|
|
int d = DIST(w->pos->index, cur->index);
|
|
int remain = w->time - (d + 1);
|
|
PAD3; log(3, "worker %d/%d ", _w + 1, nworkers );
|
|
PAD3; log(3, "dist(%s,%s) = %d ", w->pos->val.str, cur->val.str, d);
|
|
if (remain < 1) {
|
|
PAD3; log(4, "time exhausted\n");
|
|
continue;
|
|
}
|
|
val = remain * cur->rate;
|
|
PAD3; log(3, "--> val=%d\n", val);
|
|
|
|
if (w->depth > 0) {
|
|
struct worker _tmp = *w;
|
|
w->pos = cur;
|
|
w->depth--;
|
|
w->time = remain;
|
|
/* do not use list_del() here, to preserve prev/next pointers */
|
|
__list_del_entry(list_flow);
|
|
sub = eval3(_depth + 1, worker, pick, pressure + w->pos->rate);
|
|
list_flow->prev->next = list_flow;
|
|
list_flow->next->prev = list_flow;
|
|
*w = _tmp;
|
|
} else {
|
|
sub = NULL;
|
|
}
|
|
val1 = sub? sub->evalflow: 0;
|
|
PAD3; log(3, "eval3(%s->%s)= %5d = %d + %d", w->pos->val.str, cur->val.str,
|
|
val+val1, val, val1);
|
|
if (val + val1 > max) {
|
|
max = val + val1;
|
|
best = cur;
|
|
bestworker = _w;
|
|
log(3, " NEW MAX !");
|
|
}
|
|
log(3, "\n");
|
|
}
|
|
}
|
|
if (best) {
|
|
best->evalflow = max;
|
|
best->worker = bestworker; /* FIXME */
|
|
PAD3; log(3, "EVAL returning best [%s] worker=%d eval=%d\n", best->val.str,
|
|
best->worker, max);
|
|
}
|
|
return best;
|
|
}
|
|
|
|
static struct valve *find_valve(union val val, int ntunnels, int rate)
|
|
{
|
|
struct valve *cur;
|
|
|
|
log_f(3, "val=%s ntunnels=%d rate=%d\n", val.str, ntunnels, rate);
|
|
list_for_each_entry(cur, &graph.index_sorted, index_sorted) {
|
|
//log(3, "\tcomparing with found, addr=%p\n", cur);
|
|
if (cur->val.val == val.val) {
|
|
log(3, "\tfound, addr=%p\n", cur);
|
|
if (ntunnels)
|
|
goto init;
|
|
goto end;
|
|
}
|
|
}
|
|
cur = pool_get(pool_valve);
|
|
cur->val.val = val.val;
|
|
cur->ntunnels = 0;
|
|
cur->state = CLOSED;
|
|
cur->worker = -1;
|
|
cur->evalflow = cur->playedflow = 0;
|
|
cur->evaltime = cur->playedtime = 30;
|
|
INIT_LIST_HEAD(&cur->index_sorted);
|
|
INIT_LIST_HEAD(&cur->flow_sorted);
|
|
INIT_LIST_HEAD(&cur->eval);
|
|
INIT_LIST_HEAD(&cur->played);
|
|
log(3, "\talloc new, addr=%p\n", cur);
|
|
init:
|
|
if (ntunnels) {
|
|
cur->rate = rate;
|
|
cur->tottunnels = ntunnels;
|
|
cur->tunnels = calloc(ntunnels, sizeof(struct valve *));
|
|
}
|
|
end:
|
|
return cur;
|
|
}
|
|
|
|
/**
|
|
* nthtok - get nth token fron string.
|
|
* @buf: buffer to parse.
|
|
* @sep: separators string.
|
|
* @n: token number (0: first token).
|
|
*
|
|
* @Return: pointer to token.
|
|
*/
|
|
static char *nthtok(char *buf, const char *sep, int n)
|
|
{
|
|
char *ret;
|
|
for (; n >= 0; n--) {
|
|
ret = strtok(buf, sep);
|
|
buf = NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define SEP " ,;="
|
|
static struct graph *parse()
|
|
{
|
|
int index = 0, ntunnels;
|
|
size_t alloc = 0;
|
|
ssize_t buflen;
|
|
char *buf = NULL, *tok;
|
|
int rate;
|
|
struct valve *v1, *v2;
|
|
union val cur, link;
|
|
|
|
while ((buflen = getline(&buf, &alloc, stdin)) > 0) {
|
|
buf[--buflen] = 0;
|
|
/* valve name */
|
|
strncpy(cur.str, nthtok(buf, SEP, 1), sizeof(cur.str));
|
|
|
|
//printf("valve=%s ", tok);
|
|
rate = atoi(nthtok(NULL, SEP, 3));
|
|
//printf("rate=%s ", tok);
|
|
tok = nthtok(NULL, SEP, 4);
|
|
ntunnels = (buf + buflen - tok) / 4 + 1;
|
|
v1 = find_valve(cur, ntunnels, rate);
|
|
v1->index = index++;
|
|
// TODO: remove this list ?
|
|
list_add_tail(&v1->index_sorted, &graph.index_sorted);
|
|
graph.nvalves++;
|
|
//if (rate || v1->val.val == ('A' << 8 | 'A')) {
|
|
if (rate) {
|
|
struct valve *cur;
|
|
graph.npositive++;
|
|
/* keep this list sorted by flow decrasing */
|
|
list_for_each_entry(cur, &graph.flow_sorted, flow_sorted) {
|
|
if (rate > cur->rate) {
|
|
list_add_tail(&v1->flow_sorted, &cur->flow_sorted);
|
|
goto inserted;
|
|
}
|
|
}
|
|
list_add_tail(&v1->flow_sorted, &graph.flow_sorted);
|
|
inserted: ;
|
|
if (rate) {
|
|
//printf("adjust openable(%d): %#lx", v1->index, graph.openable);
|
|
graph.openable |= (1 << v1->index);
|
|
//printf("->%#lx", graph.openable);
|
|
}
|
|
}
|
|
//printf("lead=%s ntunnels=%d ", tok, ntunnels);
|
|
do {
|
|
link.val = *(u16 *)tok;
|
|
v2 = find_valve(link, 0, 0);
|
|
*(v1->tunnels + v1->ntunnels++) = v2;
|
|
//printf(",%s", tok);
|
|
} while ((tok = nthtok(NULL, SEP, 0)));
|
|
//printf("\n");
|
|
}
|
|
graph.aa = find_valve((union val) { .str="AA" }, 0, 0);
|
|
/* build array of indexed valves */
|
|
graph.indexed_all = calloc(graph.nvalves, sizeof(struct valve *));
|
|
list_for_each_entry(v1, &graph.index_sorted, index_sorted) {
|
|
graph.indexed_all[v1->index] = v1;
|
|
}
|
|
return &graph;
|
|
}
|
|
|
|
static int is_neighbour(int i, int j)
|
|
{
|
|
struct valve *v1 = graph.indexed_all[i], *v2 = graph.indexed_all[j];
|
|
for (int i = 0; i < v1->ntunnels; ++i)
|
|
if (v1->tunnels[i]->val.val == v2->val.val)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void build_distances()
|
|
{
|
|
int i, j, k;
|
|
graph.dist = calloc(graph.nvalves * graph.nvalves, sizeof(int));
|
|
/* initialize values */
|
|
for (i = 0; i < graph.nvalves; ++i) {
|
|
for (j = 1; j < graph.nvalves; ++j) {
|
|
if (i != j) {
|
|
if (is_neighbour(i, j))
|
|
DIST(i, j) = DIST(j, i) = 1;
|
|
else
|
|
DIST(i, j) = DIST(j, i) = 10000;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* get all distances using Floyd-Warshall
|
|
* see https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
|
|
*
|
|
* Add all vertices one by one to the set of intermediate vertices.
|
|
* ---> Before start of an iteration, we have shortest distances between all
|
|
* pairs of vertices such that the shortest distances consider only the
|
|
* vertices in set {0, 1, 2, .. k-1} as intermediate vertices.
|
|
* ----> After the end of an iteration, vertex no. k is added to the set of
|
|
* intermediate vertices and the set becomes {0, 1, 2, .. k}
|
|
*/
|
|
for (k = 0; k < graph.nvalves; k++) {
|
|
/* Pick all vertices as source one by one */
|
|
for (i = 0; i < graph.nvalves; i++) {
|
|
/* Pick all vertices as destination for the above picked source */
|
|
for (j = i + 1; j < graph.nvalves; j++)
|
|
DIST(i, j) = DIST(j, i) = min(DIST(i, j), DIST(i, k) + DIST(k, j));
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void print_played()
|
|
{
|
|
struct valve *p;
|
|
int total = 0;
|
|
for (int w = 0; w < 2; ++w) {
|
|
int remain = 26, i = 1;
|
|
struct valve *prev = graph.aa;
|
|
i = 1;
|
|
printf("played by %d:\n", w);
|
|
list_for_each_entry(p, &graph.played[w], played) {
|
|
printf("%2d: %s, ", i, p->val.str);
|
|
remain -= DIST(p->index, prev->index) + 1;
|
|
total += p->rate * remain;
|
|
printf("dist=%d remain=%d total=%d", DIST(p->index, prev->index), remain,
|
|
total);
|
|
printf("\n");
|
|
i++;
|
|
prev = p;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void doit()
|
|
{
|
|
struct worker w[2];
|
|
w[0].pos = w[1].pos = graph.aa;
|
|
w[0].depth = w[1].depth = 4;
|
|
w[0].time = w[1].time = 26;
|
|
/* struct worker w[2] = {
|
|
{ .pos = graph.aa, .depth = 5, .time = 30 },
|
|
{ .pos = graph.aa, .depth = 5, .time = 30 },
|
|
};
|
|
*/
|
|
struct valve *best;
|
|
|
|
//list_add_tail(&w[0].pos->played, &graph.played[0]);
|
|
//list_add_tail(&w[1].pos->played, &graph.played[1]);
|
|
//while ()
|
|
while ((best = eval3(0, w, 12, 0))) {
|
|
list_del(&best->flow_sorted);
|
|
list_add_tail(&best->played, &graph.played[best->worker]);
|
|
w[best->worker].time -= DIST(w[best->worker].pos->index, best->index) + 1;
|
|
w[best->worker].pos = best;
|
|
print_played();
|
|
}
|
|
|
|
}
|
|
|
|
static ulong part1()
|
|
{
|
|
ulong res = 1;
|
|
struct worker w[2];
|
|
w[0].pos = w[1].pos = graph.aa;
|
|
w[0].depth = w[1].depth = 5;
|
|
w[0].time = w[1].time = 30;
|
|
|
|
printf("part 1\n");
|
|
eval(0, graph.aa, 7, 7, 30, 0);
|
|
eval2(0, &w[0], 4, 0);
|
|
return res;
|
|
}
|
|
|
|
static ulong part2()
|
|
{
|
|
ulong res = 1;
|
|
//struct worker w = {
|
|
// .pos = graph.aa,
|
|
// .depth = 4,
|
|
// .time = 30
|
|
//};
|
|
printf("part 2\n");
|
|
//while ()
|
|
//eval2(0, &w, 7, 0);
|
|
doit();
|
|
return res;
|
|
}
|
|
|
|
int main(int ac, char **av)
|
|
{
|
|
int part = parseargs(ac, av);
|
|
pool_valve = pool_create("valve", 512, sizeof(struct valve));
|
|
parse();
|
|
build_distances();
|
|
print_valves();
|
|
printf("%s: res=%lu\n", *av, part == 1? part1(): part2());
|
|
exit(0);
|
|
}
|