/* aoc-c.c: Advent of Code 2021, day 21 parts 1 & 2 * * Copyright (C) 2022 Bruno Raoult ("br") * Licensed under the GNU General Public License v3.0 or later. * Some rights reserved. See COPYING. * * You should have received a copy of the GNU General Public License along with this * program. If not, see . * * SPDX-License-Identifier: GPL-3.0-or-later */ #include #include #include #include #include "pool.h" #include "debug.h" #include "bits.h" #include "list.h" typedef struct step { int sign; /* 0: negative */ int x[2], y[2], z[2]; /* look for 'Arghh' below ;-) */ struct list_head list_step; } step_t; LIST_HEAD(list_step); pool_t *pool_step; int ncubes; #define MAX(x,y) ((x) > (y) ? (x) : (y)) #define MIN(x,y) ((x) < (y) ? (x) : (y)) static inline s64 cube_volume(step_t *c) { /* Arghh... The missing cast below implied int overflow, and did cost * me 2 days :-( */ s64 volume = (s64)(c->x[1] - c->x[0] + 1) * (c->y[1] - c->y[0] + 1) * (c->z[1] - c->z[0] + 1); return c->sign? volume: -volume; } static step_t *read_instruction(step_t *cube) { char onoff[5]; if (scanf("%5s x=%d..%d,y=%d..%d,z=%d..%d\n", onoff, &cube->x[0], &cube->x[1], &cube->y[0], &cube->y[1], &cube->z[0], &cube->z[1]) == 7) { cube->sign = onoff[1] == 'n'; return cube; } return NULL; } /* intersect 2 cubes (x axis example): * * x10 x11 * +---------+ * | x0 | * | +---|---+ * | | | | * +---------+ | * | x1 | * +-------+ * x20 x21 * * x0 = MAX(x10, x20) * x1 = MIN(x11, x21) * * If x0 > x1, cubes do not intersect. */ static inline step_t *cube_intersect(step_t *old, step_t *new) { step_t *cube = NULL; int x[2], y[2], z[2]; x[0] = MAX(old->x[0], new->x[0]); x[1] = MIN(old->x[1], new->x[1]); if (x[0] > x[1]) return NULL; y[0] = MAX(old->y[0], new->y[0]); y[1] = MIN(old->y[1], new->y[1]); if (y[0] > y[1]) return NULL; z[0] = MAX(old->z[0], new->z[0]); z[1] = MIN(old->z[1], new->z[1]); if (z[0] > z[1]) return NULL; /* intersection exists, we create a new cuboid and fill it */ cube = pool_get(pool_step); for (int i = 0; i < 2; ++i) { cube->x[i] = x[i]; cube->y[i] = y[i]; cube->z[i] = z[i]; } return cube; } /* brute force approach, I did not test with part 2 algorithm, * my guess is that it could be worse... */ static s64 part1() { step_t cur; static char cuboid[101][101][101]; s64 res = 0; while (read_instruction(&cur)) { int x1, x2, y1, y2, z1, z2; x1 = MAX(cur.x[0], -50); x2 = MIN(cur.x[1], 50); y1 = MAX(cur.y[0], -50); y2 = MIN(cur.y[1], 50); z1 = MAX(cur.z[0], -50); z2 = MIN(cur.z[1], 50); for (int x = x1; x <= x2; ++x) for (int y = y1; y <= y2; ++y) for (int z = z1; z <= z2; ++z) cuboid[x+50][y+50][z+50] = cur.sign; } for (int x = 0; x < 101; ++x) for (int y = 0; y < 101; ++y) for (int z = 0; z < 101; ++z) res += cuboid[x][y][z]; return res; } /* For part 2, we loop over all instructions (input on/off cuboids): * For all previous cuboids, search for intersection, then add a * cuboid to negate it (this resets this intersection to zero). * If new cuboid is "on", add it also to the list, to make this intersection * "becoming 1" again. */ static s64 part2() { step_t *cur, *tmp, *new, *inter; s64 res = 0; pool_step = pool_create("steps", 2048, sizeof(step_t)); while ((new = read_instruction(tmp = pool_get(pool_step)))) { LIST_HEAD(list_tmp); /* temp intersections list */ list_for_each_entry(cur, &list_step, list_step) { /* intersection found: we insert it to negate cur * ones. */ if ((inter = cube_intersect(cur, new))) { inter->sign = !cur->sign; /* negates intersection */ list_add_tail(&inter->list_step, &list_tmp); res += cube_volume(inter); } } /* add temp intersections list to global's tail */ list_splice_tail(&list_tmp, &list_step); /* add the new "on" cuboid to the list */ if (new->sign) { list_add_tail(&new->list_step, &list_step); res += cube_volume(new); } else { pool_add(pool_step, tmp); /* release memory */ } } pool_destroy(pool_step); return res; } static int usage(char *prg) { fprintf(stderr, "Usage: %s [-d debug_level] [-p part]\n", prg); return 1; } int main(int ac, char **av) { int opt, part = 1; while ((opt = getopt(ac, av, "d:p:")) != -1) { switch (opt) { case 'd': debug_level_set(atoi(optarg)); break; case 'p': /* 1 or 2 */ part = atoi(optarg); if (part < 1 || part > 2) return usage(*av); break; default: return usage(*av); } } if (optind < ac) return usage(*av); printf("%s : res=%ld\n", *av, part == 1? part1(): part2()); exit(0); }