day 17 parts 1 & 2, before code cleaning.

This commit is contained in:
2021-12-27 11:10:41 +01:00
parent f3717c906b
commit 7b7095b8d7
3 changed files with 265 additions and 1 deletions

235
2021/day17/aoc-c.c Normal file
View File

@@ -0,0 +1,235 @@
/* aoc-c.c: Advent of Code 2021, day 16 parts 1 & 2
*
* Copyright (C) 2021 Bruno Raoult ("br")
* Licensed under the GNU General Public License v3.0 or later.
* Some rights reserved. See COPYING.
*
* You should have received a copy of the GNU General Public License along with this
* program. If not, see <https://www.gnu.org/licenses/gpl-3.0-standalone.html>.
*
* SPDX-License-Identifier: GPL-3.0-or-later <https://spdx.org/licenses/GPL-3.0-or-later.html>
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <malloc.h>
#include <ctype.h>
#include <stdint.h>
#include <math.h>
#include "debug.h"
#include "pool.h"
#include "bits.h"
#include "list.h"
typedef struct vector {
s64 x, y;
} vector_t;
#define TMIN 0
#define TMAX 1
struct target {
s64 x1, y1;
s64 x2, y2;
} target;
struct bounds {
s64 dx_min, dx_max;
s64 dy_min, dy_max;
s64 steps_min;
} bounds;
inline static int hit(s64 x, s64 y)
{
return x >= target.x1 && y >= target.y1 &&
x <= target.x2 && y <= target.y2;
}
/* if we take hypothesis target y is always negative, we can exclude steps
* which are still over 0. We reach back zero after 2 x d1 +1 steps for
* initial d1 positive (0 otherwise).
*/
static s64 nth(s64 x, s64 n)
{
return ((2 * x) + -1 * (n - 1)) * n / 2;
}
static s64 nth_x(s64 x0, s64 n)
{
return n >= x0? nth(x0, x0): nth(x0, n);
//return ((2 * x0) * -(n - 1)) / 2;
}
/* if we take hypothesis target y is always negative, we can exclude steps
* which are still over 0. We reach back zero after 2 x d1 +1 steps for
* initial d1 positive (0 otherwise).
*/
static s64 nth_yzero(s64 y0)
{
return y0 >= 0? y0 * 2 + 1 : 0;
}
/* determine max possible initial dx :
* ( dx )(dx + 1) <= minx * 2
* <=> dx² + dx - minx * 2 <= 0
* solution is x = (-b ± sqrt(b² - 4 * a * c)) / 2 * b, with a = 1, b = 1, c = -2 * minx
* => (-1 ± sqrt(1 + 8 * minx)) / 2 <= 0
*/
static s64 dx_min(s64 xmin)
{
s64 res = (s64) ((-1) + sqrt((double)(1 + 8 * xmin))) / 2;
bounds.steps_min = 1;
bounds.dx_min = res;
/*nmin = (s64) (-(1+2*res) +
sqrt((float)(1 + 2 * res)
* (float)(1 + 2 * res)
- 4 * (2 * res - xmin))) / 2;
*/
//nmin = ((float) 1 + (float)sqrt(1 + 4.0 * xmin)) / (float)2;
//printf("xmin=%ld res=%ld nmin=%ld\n", xmin, res, nmin);
//nmin = ((float) 1 - (float)sqrt((float)1 + 4.0 * xmin)) / (float)2;
//printf("xmin=%ld res=%ld nmin=%ld\n", xmin, res, nmin);
return res;
}
/*
static s64 max_y_steps(s64 xmax))
{
return (xmax - 1) / 2;
}
*/
/* The highest solution is the solution of:
* y1 * (y1 +1) / 2
* (we can ignore x velocity, as we can reach any target x1 with x velocity
* becoming zero at x1).
*/
static s64 part1()
{
return target.y1 * (target.y1 + 1) / 2;
}
static s64 part2()
{
return target.y1 * (target.y1 + 1) / 2;
}
/* read input
*/
static int read_input()
{
if (scanf("target area: x=%ld..%ld, y=%ld..%ld",
&target.x1, &target.x2,
&target.y1, &target.y2))
return 0;
return 1;
}
static int usage(char *prg)
{
fprintf(stderr, "Usage: %s [-d debug_level] [-p part]\n", prg);
return 1;
}
int main(int ac, char **av)
{
int opt, part = 1;
while ((opt = getopt(ac, av, "d:p:")) != -1) {
switch (opt) {
case 'd':
debug_level_set(atoi(optarg));
break;
case 'p': /* 1 or 2 */
part = atoi(optarg);
if (part < 1 || part > 2)
return usage(*av);
break;
default:
return usage(*av);
}
}
if (optind < ac)
return usage(*av);
read_input();
printf("%s : xmin=%ld ymin=%ld xmax=%ld ymax=%ld part1=%ld\n", *av,
target.x1, target.y1, target.x2, target.y2,
part1());
//s64 dxmin = dx_min(target.x1);
//for (s64 i = 0; i < 10; ++i) {
dx_min(target.x1);
bounds.dx_max = target.x2;
bounds.dy_min = target.y1;
/* y will comme back at zero with same dy as initial one. next step will be d0+1.
* If d0+1 is > min target y, we will never reach target.
*/
bounds.dy_max = -target.y1;
printf("yzero(%ld) = %ld xmin(%ld) = %ld\n",
target.x2, nth_yzero(target.x2),
target.x1, dx_min(target.x1));
/* loop on x initial acceletation */
s64 count = 0, besty=0;
for (s64 dx = bounds.dx_min; dx <= bounds.dx_max ; ++dx) {
/* maybe here make steps for x only, and find all valid steps.
* need to know if dx becomes zero and too low
*/
for (s64 dy = bounds.dy_min; dy <= bounds.dy_max; ++dy) {
s64 maxy = 0;
for (s64 step = 1; ; step++) {
s64 newx = nth_x(dx, step);
s64 newy = nth(dy, step);
printf("dx=%ld dy=%ld step=%ld x=%ld y=%ld\n", dx, dy, step, newx, newy);
if (newx > target.x2) {
printf("\tnext y1\n");
goto nexty;
}
if (newy < target.y1) {
printf("\t\tnext y2\n");
goto nexty;
}
if (newy > maxy) {
maxy = newy;
printf("new maxy = %ld\n", maxy);
}
/* need to check if x can join minx */
/* need to find max y bound */
if (hit(newx, newy)) {
printf("\tHIT: %ld,%ld\n", newx, newy);
count++;
if (maxy > besty) {
besty = maxy;
printf("new besty = %ld\n", besty);
}
goto nexty;
}
}
nexty:
}
nextx:
}
printf("count=%ld besty=%ld\n", count, besty);
exit (0);
/*
for (s64 dx = 0; dx <=10; ++dx) {
printf("x0=%2ld: ", dx);
for (int i = 0; i < 15; ++i)
printf(" %d=%ld/%ld", i, nth_x(dx, i), nth(dx, i));
printf("\n");
}
*/
printf("%s : res=%ld\n", *av, part == 1? part1(): part2(&target));
exit (0);
}