Day 17 part 1 , bash version
This commit is contained in:
257
day17/README
257
day17/README
@@ -144,7 +144,262 @@ After the full six-cycle boot process completes, 112 cubes are left in the activ
|
||||
|
||||
Starting with your given initial configuration, simulate six cycles. How many cubes are left in the active state after the sixth cycle?
|
||||
|
||||
To begin, get your puzzle input.
|
||||
Your puzzle answer was 263.
|
||||
|
||||
The first half of this puzzle is complete! It provides one gold star: *
|
||||
--- Part Two ---
|
||||
|
||||
For some reason, your simulated results don't match what the experimental energy source engineers expected. Apparently, the pocket dimension actually has four spatial dimensions, not three.
|
||||
|
||||
The pocket dimension contains an infinite 4-dimensional grid. At every integer 4-dimensional coordinate (x,y,z,w), there exists a single cube (really, a hypercube) which is still either active or inactive.
|
||||
|
||||
Each cube only ever considers its neighbors: any of the 80 other cubes where any of their coordinates differ by at most 1. For example, given the cube at x=1,y=2,z=3,w=4, its neighbors include the cube at x=2,y=2,z=3,w=3, the cube at x=0,y=2,z=3,w=4, and so on.
|
||||
|
||||
The initial state of the pocket dimension still consists of a small flat region of cubes. Furthermore, the same rules for cycle updating still apply: during each cycle, consider the number of active neighbors of each cube.
|
||||
|
||||
For example, consider the same initial state as in the example above. Even though the pocket dimension is 4-dimensional, this initial state represents a small 2-dimensional slice of it. (In particular, this initial state defines a 3x3x1x1 region of the 4-dimensional space.)
|
||||
|
||||
Simulating a few cycles from this initial state produces the following configurations, where the result of each cycle is shown layer-by-layer at each given z and w coordinate:
|
||||
|
||||
Before any cycles:
|
||||
|
||||
z=0, w=0
|
||||
.#.
|
||||
..#
|
||||
###
|
||||
|
||||
|
||||
After 1 cycle:
|
||||
|
||||
z=-1, w=-1
|
||||
#..
|
||||
..#
|
||||
.#.
|
||||
|
||||
z=0, w=-1
|
||||
#..
|
||||
..#
|
||||
.#.
|
||||
|
||||
z=1, w=-1
|
||||
#..
|
||||
..#
|
||||
.#.
|
||||
|
||||
z=-1, w=0
|
||||
#..
|
||||
..#
|
||||
.#.
|
||||
|
||||
z=0, w=0
|
||||
#.#
|
||||
.##
|
||||
.#.
|
||||
|
||||
z=1, w=0
|
||||
#..
|
||||
..#
|
||||
.#.
|
||||
|
||||
z=-1, w=1
|
||||
#..
|
||||
..#
|
||||
.#.
|
||||
|
||||
z=0, w=1
|
||||
#..
|
||||
..#
|
||||
.#.
|
||||
|
||||
z=1, w=1
|
||||
#..
|
||||
..#
|
||||
.#.
|
||||
|
||||
|
||||
After 2 cycles:
|
||||
|
||||
z=-2, w=-2
|
||||
.....
|
||||
.....
|
||||
..#..
|
||||
.....
|
||||
.....
|
||||
|
||||
z=-1, w=-2
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=0, w=-2
|
||||
###..
|
||||
##.##
|
||||
#...#
|
||||
.#..#
|
||||
.###.
|
||||
|
||||
z=1, w=-2
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=2, w=-2
|
||||
.....
|
||||
.....
|
||||
..#..
|
||||
.....
|
||||
.....
|
||||
|
||||
z=-2, w=-1
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=-1, w=-1
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=0, w=-1
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=1, w=-1
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=2, w=-1
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=-2, w=0
|
||||
###..
|
||||
##.##
|
||||
#...#
|
||||
.#..#
|
||||
.###.
|
||||
|
||||
z=-1, w=0
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=0, w=0
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=1, w=0
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=2, w=0
|
||||
###..
|
||||
##.##
|
||||
#...#
|
||||
.#..#
|
||||
.###.
|
||||
|
||||
z=-2, w=1
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=-1, w=1
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=0, w=1
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=1, w=1
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=2, w=1
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=-2, w=2
|
||||
.....
|
||||
.....
|
||||
..#..
|
||||
.....
|
||||
.....
|
||||
|
||||
z=-1, w=2
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=0, w=2
|
||||
###..
|
||||
##.##
|
||||
#...#
|
||||
.#..#
|
||||
.###.
|
||||
|
||||
z=1, w=2
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
.....
|
||||
|
||||
z=2, w=2
|
||||
.....
|
||||
.....
|
||||
..#..
|
||||
.....
|
||||
.....
|
||||
|
||||
After the full six-cycle boot process completes, 848 cubes are left in the active state.
|
||||
|
||||
Starting with your given initial configuration, simulate six cycles in a 4-dimensional space. How many cubes are left in the active state after the sixth cycle?
|
||||
|
||||
Answer:
|
||||
|
||||
Although it hasn't changed, you can still get your puzzle input.
|
||||
|
||||
You can also [Share] this puzzle.
|
||||
|
Reference in New Issue
Block a user